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Abstract

We present a numerical method for coupling an Eulerian compressible flow solver with a Lagrangian solver for fast

transient problems involving fluid–solid interactions. Such coupling needs arise when either specific solution methods or

accuracy considerations necessitate that different and disjoint subdomains be treated with different (Eulerian or La-

grangian) schemes. The algorithm we propose employs standard integration of the Eulerian solution over a Cartesian

mesh. To treat the irregular boundary cells that are generated by an arbitrary boundary on a structured grid, the

Eulerian computational domain is augmented by a thin layer of Cartesian ghost cells. Boundary conditions at these cells

are established by enforcing conservation of mass and continuity of the stress tensor in the direction normal to the

boundary. The description and the kinematic constraints of the Eulerian boundary rely on the unstructured Lagrangian

mesh. The Lagrangian mesh evolves concurrently, driven by the traction boundary conditions imposed by the Eulerian

counterpart. Several numerical tests designed to measure the rate of convergence and accuracy of the coupling algo-

rithm are presented as well. General problems in one and two dimensions are considered, including a test consisting of

an isotropic elastic solid and a compressible fluid in a fully coupled setting where the exact solution is available.
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1. Introduction

There is a variety of numerical methods today that can be used to tackle multi-material mechanics

problems involving both fluid and solid motions as well as their interactions. Traditionally, fluid dynam-

icists have favored Eulerian methods while solid mechanicians prefer Lagrangian methods.

It is clear that a large class of applications is neither ideally suited for a pure Lagrangian nor a pure

Eulerian approach. In a Lagrangian calculation, the mesh points correspond to elements of mass in the

material and their trajectories follow the particle paths of the material elements. Thus, the position of a

boundary is automatically calculated. Since the initial accuracy of the approximation is generally main-

tained throughout the computation, Lagrangian schemes have proven to be very accurate for a constant
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number of mesh points as long as the approximating mesh remains regular. However, as the computation

evolves, the stretching of the computational grid may drastically reduce the stable time step (which is

proportional to the minimum size of an element of a triangular grid, say). Furthermore, if the mesh be-

comes highly distorted, the calculation becomes increasingly inaccurate. Remeshing is then required, at the

price of increased complexity and computational effort. Conversely, a pure Eulerian calculation allows the

development of a complex flow, at the price of a loss in accuracy when treating an arbitrarily varying, time-

dependent boundary (which is intrinsically of a Lagrangian type). Examples of the limitations of a pure

Eulerian or Lagrangian approach can be found in [1].
Hybrid methods such as the arbitrary Lagrangian–Eulerian (ALE) method address multi-material appli-

cations involving fluid–solid interactions. Refs. [2–5] report on recent advances in ALE coupling. In ALE

methods, the conservation equations are expressed in a control volume formulation, where the control volume

is bounded by a surface SaðtÞmoving with arbitrary local velocity ua. The control volume velocity ua has two

important limit values. In the Eulerian limit, ua ¼ 0 and the control volumes are fixed. In the Lagrangian limit

ua ¼ u, the local flow field velocity, and the control volumes coincide with material volumes.

In ALE methods, a Lagrangian phase is followed by a coordinate transformation due to the mesh

motion (remapping or advection phase). The advection step performs an incremental rezone in which nodes
are moved only a small fraction of a typical length of the surrounding elements. Monotonic advection

algorithms are used to prevent the advection step from creating new minimum or maximum values for the

solution variables.

In fluid–structure interactions with ALE methods, the equations of the structural elements are usually

expressed using a purely Lagrangian scheme, so that the nodes follow the motion of material particles. The

interaction with a fluid can be modeled through intermediate regions in which the mesh moves with a

spatially varying velocity. A grid-rezoning technique is used within the bulk of the fluid domain to respect

the movement of Lagrangian interfaces by simultaneously minimizing the grid distortion. The specification
of ua is key to the success of ALE methods. Unfortunately, this process often requires a priori knowledge of

the solution when modeling the problem. For systems where the Lagrangian domain suffers large defor-

mation or where the Eulerian flow has high rotations, ALE methods will often fail to give a solution.

Finally, the ALE method does not appear to be very suitable for loosely coupling separate Eulerian and

Lagrangian software packages since this introduces a third solution algorithm and increases the complexity

of the coupling process rather than simplifying it.

The scheme we propose provides an alternative to ALE methods. Unlike ALE schemes, there is no

mixed Eulerian–Lagrangian region and coupling occurs only through interaction at the boundary of the
Eulerian and Lagrangian regions. The two subdomains are integrated separately by two independent

(synchronized) Eulerian and Lagrangian solvers. We will refer to this scheme using the acronym GEL

(ghost-fluid Eulerian–Lagrangian).

Since the Eulerian region mesh is usually Cartesian and stationary, the problem of how to treat moving

and irregular flow domain boundaries arises. When an arbitrary boundary is embedded in a structured grid,

any cell whose interior contains this boundary will be a ‘‘cut cell’’. By filling in the cut cells and a small layer

of neighboring regular cells with an appropriate ‘‘ghost fluid’’, cell updates can be performed in the same

standard way as in the bulk of the computational domain. Additionally, the time step is not constrained by
the geometry of the cut cells.

The treatment of the cut cells is crucial to any Cartesian grid method, since a straightforward approach

would reduce the stable time step to an arbitrarily small value due to the reduced size of the irregular cells.

Also, accuracy and conservation at the boundary must be addressed, but in such a way that extension of the

coupling scheme to two and three dimensions is relatively easy. Early work by Noh [1] made use of re-

distribution and cell-merging, probably the most popular approach in Cartesian grid methods. An extensive

review of these methods can be found in [6]. Numerical results typically present only first-order accuracy at

the boundary, independent of the accuracy of the flow solver in the bulk of the computational domain.
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Pember et al. [6] propose an adaptive Cartesian grid method where the boundary is reconstructed with a

shock tracking approach and treated as a stationary reflecting wall. The coupling scheme is an explicit two-

step method, enforcing conservation in the cut cells and in the neighboring regular cells through a redis-

tribution algorithm. Numerical results for a Prandtl–Meyer expansion show a degradation of the accuracy

of the scheme to first-order at the boundary. Recently, Falcovitz et al. [7] proposed a coupling scheme that

maintains conservation across the boundary cells when both the fluid and the boundary undergo uniform

motion. No indication is given on how the algorithm performs in actual dynamical problems.

The method we propose has its origin (and name) in the ghost fluid method (GFM) originated by
Fedkiw et al. [8–10]. GFM originated as an algorithm for handling Eulerian multi-phase multi-fluid

problems where interfaces separate regions of different fluids, e.g., air and water. The original GFM is

designed to capture discontinuous interfaces with an Eulerian solver on each side. Within a prescribed

distance of an interface, an Eulerian grid point is a real node to one solver and a ghost node to the other.

The prescription for populating a state of a ghost node in the GFM is to replace pressure and normal

velocity from the real node, while extrapolating in the normal direction a second thermodynamic variable

(entropy) and the tangential velocity.

GEL differs from the original formulation in the way the solution variables in the ghost region are
populated. In this respect, GEL is more akin to the local mirroring extrapolation technique presented by

Forrer and Berger [11] and Forrer and Jeltsch [12], since it treats the Eulerian–Lagrangian interface as an

impermeable wall at any new iteration of the Eulerian solver. The main difference with respect to [11,12] lies

in the way the Eulerian–Lagrangian interface is tracked; in our case, a level set-based approach [13,14] is

followed. Also, GEL does not use boundary cell averaging and the order of the mirroring extrapolation is

lower than in [11,12], at least for a smooth flow. While less sophisticated, GEL is expected to be more

robust when dealing with arbitrarily complex boundaries and fluid–solid shock interactions, particularly in

three dimensions. We note that results presented by Forrer and Berger for moving boundaries are limited to
flow interactions with rigid bodies, whereas we address fully coupled problems in the sense described by

Noh [1].

In Section 1, a thorough treatment of the coupling algorithm is provided. Section 2 is an overview,

stating the class of problems we intend to address and outlining the coupling algorithm. As the Eulerian

and Lagrangian solvers that are used in this paper are well established, their descriptions are brief by intent,

with further references provided for readers desiring more information. Section 3 focuses on the decom-

position of the solution domain into Eulerian and Lagrangian subdomains, which leads to the definition of

the Eulerian–Lagrangian interface. The dynamical and kinematic constraints that need to be satisfied by
this interface are described there. Section 4 addresses the numerical implementation of the coupling scheme.

Other pertinent issues, including the temporal evolution of the subdomains, possible enhancements, and

areas of future research are also discussed.

The second part of the paper presents several numerical tests designed to measure the rate of conver-

gence and accuracy of the algorithm. Section 5 describes several one-dimensional verification tests. The

behavior of the interface under shock wave transmission is examined in the ‘‘transparency tests’’. Section 6

discusses several two-dimensional tests. Verification tests proposed in [11] are adopted in order to inves-

tigate issues of mass conservation. The final example we consider is a verification test consisting of a shock
load over an isotropic elastic solid (superseismic loading problem). This is a fully coupled fluid–solid in-

teraction problem where the exact solution is known.

2. Overview

The work on Eulerian–Lagrangian coupling described in this paper is a part of the research effort

at Caltech to develop a virtual test facility (VTF) that provides a problem-solving environment for
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three-dimensional parallel simulations of the dynamic response of materials in multi-physics problems.

GEL coupling is used extensively and is the workhorse behind the VTF [15]. A typical example application

of the VTF is modeling the cylinder test used for high-explosive performance studies [16]. In this test,

sketched in the left panel of Fig. 1, a cylinder of high explosive is detonated inside of a metal tube. The

subsequent motion of the metal is used as a measure of the performance of the explosive. The motion of the

metal and the progress of the detonation wave can be strongly coupled if the chemical reaction processes in

the detonation wave are sufficiently slow.

The approach we follow divides the problem into a fluid mechanics and a solid mechanics portion (see
Fig. 1). This division is both theoretical and computational. On the one hand, it allows research and de-

velopment on the two different subject areas to progress separately and concurrently; on the other hand,

this separation let us combine the strengths of Eulerian and Lagrangian solvers.

Following standardpractice in gas dynamics, shockphysics, andhigh explosivesmodeling,we approximate

the motion in the Eulerian region as hydrodynamic in nature and neglect viscous effects. We discuss only

nonreactive flow in this paper but that is not an essential limitation and the method has been applied to

detonation problems. Nonreactive, inviscid fluid dynamics is described by the Euler equations [17]
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Here q is the density, u the velocity vector, P the pressure, and e is the specific internal energy. These
equations may be rewritten in conservative form

Ut þr � FðUÞ ¼ 0; ð2Þ

by using the vector of conserved variables U ¼ ðq; qu; qEÞT, the flux vector FðUÞ ¼ ðqu; quu þ
IP ; quðE þ P=qÞÞT, and the specific total energy E ¼ e þ 1=2kuk2. The equation set (1) must be supplemented

by an Equation of State (EoS) that describes the equilibrium thermodynamic state of the material. For our

purposes, it is sufficient to have a relationship betweenpressure, internal energy, andmass density, P ¼ P ðe; qÞ.
The examples presented in the paper all use the approximation of a perfect gas with a constant ratio of specific

heats c,

Fig. 1. Cylinder test and domain decomposition. The cylinder test problem (left) is decomposed into a Cartesian domain, here with

adaptive mesh refinement, for the fluid mechanics solver (center); and a Lagrangian domain for the solid mechanics solver (right).
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P ¼ ðc � 1Þqe: ð3Þ

Examples of a multi-species reactive flow with the Mie–Gr€uuneisen EoS for the solid explosive and the
Jones–Wilkins–Lee EoS for the reaction products are presented in [15].

A number of simple Lagrangian solvers were developed to verify and validate Eulerian-Lagrangian

coupling. These solvers are a one- and two-dimensional integrator of motion for rigid bodies with assigned

trajectory or traction boundary conditions, an Euler–Bernoulli beam module, a one-dimensional La-

grangian gas dynamics solver, and a two-dimensional explicit finite element (FE) solver. Although these

Lagrangian solvers are rather simple, the methods described in this paper have also been applied [15] with a

rather sophisticated [18] FE solver.

Each one of these discretizations leads to a set of ordinary differential equations in the generalized
displacements X of the form

M
d2X

dt2
þ C

dX

dt
þ KX ¼ f: ð4Þ

We recognize in Eq. (4) the mass matrix M , the stiffness matrix K, the dissipation matrix C, and the vector f

of generalized external forces.

In the rigid body module, X is the vector of coordinates of the center of mass. We have C ¼ 0, K ¼ 0 and

fðtÞ is computed by integrating the Eulerian pressure field over the boundary. The solution is advanced in

time either by a third-order Runge–Kutta or an explicit Newmark scheme. Alternatively, what is called an

essential boundary condition, i.e., a specification of the trajectory of the body, can be used.

The beam module is based on the classical Euler–Bernoulli (sometimes known as Bernoulli–Euler, or

Coulomb) beam theory, attributing the resistance to flexure entirely to extension and contraction of lon-
gitudinal filaments [19]. See, for example, [20] for a list of the theory�s main assumptions and limitations.

The derivation of the element matrices is standard and will not be reproduced here. A consistent mass

matrix is used for the integration of the transient beam equation. See [21–23] for further details.

A one-dimensional Lagrangian gas dynamics module has been developed to conduct a class of verifi-

cation problems referred to as transparency tests. The user can specify any combination of linear (von-

Neumann) artificial viscosity [24], quadratic artificial viscosity [25,26], and artificial heat conduction [27] for

solving the Euler equations with a perfect gas EoS. Nodal variables are nodal displacements and their

derivatives. Cell variables are pressure, internal energy, specific volume, artificial viscosity, and heat con-
duction. Properties of the finite elements (or cell variables) are staggered spatially with respect to the nodal

variables (in this one-dimensional setting). Cell variables and nodal variables are also staggered temporally

as shown in Fig. 2. Initial conditions corresponding to n ¼ 0 are displacement and velocity at t ¼ �0:5 and

pressure and specific volume at t ¼ 0. Pressure at t ¼ 0 is used to update velocity to t ¼ 0:5 by the mo-

mentum equation. Velocity at t ¼ 0:5 is used to update specific volume to t ¼ 1:0 by the continuity

equation. The energy equation and EoS are used to compute the pressure at t ¼ 1:0. This completes one

cycle, and n is now at 1. The finite difference numerical method follows essentially the scheme of von-

Neumann and Richtmyer [24]. For a more recent treatment of artificial viscosity and a detailed description
of its implementation in two and three dimensions, see [28].

The two-dimensional FE module is a displacement-based solver used for computing plane stress/

plane strain problems. Linear (3 nodes) or quadratic (6 nodes) triangular plane elements, with linearized

kinematics and explicit time integration of a Hookean elastic material, are implemented. The solution is

advanced by evaluating the force balance at time tn in order to compute the acceleration of the system

between tn and tnþ1. This is equivalent to computing the velocity and acceleration via central differences,

and the method is, therefore, second-order accurate OðDt2Þ when equal time steps are used. The ad-

vantage of this scheme is low computational cost and low storage when a diagonal mass matrix is used
[23].
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In this paper, we restrict our attention to the class of problems involving the coupling of an inviscid fluid

with a solid whose interface is assumed to be impermeable, nonreactive, adiabatic, and unable to support

surface tension. The VTF, for which the method is designed, targets problems (e.g., the cylinder test) which

fall under this category. With these assumptions, the Eulerian–Lagrangian interface (EL-interface, to be
defined in the following section) can be treated as a contact discontinuity with the following properties: (1)

no mass flux; (2) no jump in normal velocity; (3) free-slip boundary condition for the tangential velocity; (4)

no jump in the normal stress. Jumps in entropy (or density) across the interface are admitted. These

properties are enforced by the coupling scheme through the application of boundary conditions at discrete

times, as will be seen in the next section.

3. Time and space discretization

In our procedure, the entire solution domain is decomposed into subdomains of two different types,

Eulerian and Lagrangian. We assume that coupling exists only between subdomains that share a boundary,

and only through boundary conditions. The GEL coupling scheme provides these boundary conditions to

the solvers in a manner to be described next. The cases of Eulerian–Eulerian coupling (e.g., multi-fluid

simulations) and Lagrangian–Lagrangian coupling (e.g., contact mechanics) will not be discussed but their

importance is noted.

3.1. Spatial discretization and interface representation

Given an initial boundary value problem (IBVP) on X 	 T , the domain X (and the time coordinate on

the interval T , treated in the next section) needs to be discretized for numerical solution. Loosely speaking,

part of the domain will be covered by a Lagrangian mesh and the rest by an Eulerian mesh.
The discretization XL of X that is associated with the Lagrangian solver is the Lagrangian domain.

Generally, XL is an unstructured grid. The discretization XE that is associated with the Eulerian solver is the

Eulerian domain. In this paper, we further specialize XE to be a collection of structured grids, namely

Cartesian grids. Note that, in general, XL 
 X and XE 
 X. Fig. 3 is a sketch of a Lagrangian domain made

of triangular elements which is partially superimposed on a Cartesian grid.

The boundary representation of XL is an oriented surface denoted by oXL. We are particularly in-

terested in the subset of oXL whose points lie in XE. We call this subset the EL-interface oXEL. All the

coupling that takes place between the Eulerian domain and the Lagrangian domain is assumed to occur
at this interface.

Fig. 2. Finite difference space–time discretization for one-dimensional Lagrangian solver.
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The level set function (denoted by the scalar field u) contains an implicit representation of oXEL on XE. It
is defined as the signed distance from oXEL, evaluated at the center of a cell (in a finite volume scheme) or at

a grid vertex (in a finite difference scheme). In this paper, we will refer to such a point as a node when the

distinction between vertex and cell center is unimportant. The level set is discretized as the set of points

ui;j ¼ uðxi; yjÞ, where the indices i, j span the Cartesian grid. The level set was originally applied to com-

putations on Cartesian grids by Osher and Sethian in [29] and has been successfully employed to resolve

sharp interfaces between materials with different properties or different equations of state [8].

The equation u ¼ 0, or the zero level of the discretized field ui;j, identifies the EL-interface oXEL. At each

time step, the level set is reconstructed on the Cartesian grid from the current Lagrangian description of the
boundary. To this end, ray-intersection, a popular approach for determining whether a point lies inside or

outside of a surface (a process known as point-classification), is implemented [30]. The complexity of the

overall algorithm is of order OðM � NÞ, where M is the number of points in the Lagrangian boundary

representation and N is the number of points in the Eulerian grid. Recently, an algorithm to reconstruct (in

three dimensions) the closest point transform u with optimal complexity has been developed [31].

Throughout this paper, we will use the sign convention introduced in [9],

XR ¼ XE : ui;j

�
6 0
�
: ð5Þ

The set XR designates the real (or flow) part of the Eulerian domain, where the flow field is computed, as

opposed to the ghost region, where boundary conditions are set. Eq. (5) means that the level set in the real

part of the Eulerian domain is negative. Since u defines contour levels of the signed distance function, the

gradient ru at oXEL must be perpendicular to oXEL itself. A corollary of the sign convention is that the

normal vector ru=kruk is oriented from the Eulerian to the Lagrangian domain. In practice, ru=kruk is

numerically approximated by central differencing of ui;j.

To use regular Cartesian grid cells, the collection of cells XR needs to be augmented so that each
computational node has a complete stencil. This is done by adding to XR a thin layer of cells XG 
 XE at

the EL-interface. We call this subset the ghost region. The Eulerian solver operates exclusively on

Fig. 3. Eulerian (regular grid) and Lagrangian discretizations (triangular mesh) showing overlap of domains and a layer of ghost cells

(filled points). The EL-interface is indicated by the thicker line on the Lagrangian boundary.
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XR [ XG � XE. In Fig. 3, these cells are marked by a filled circle. The ghost region XG is required to be ‘‘big

enough’’ and the required size depends on the details of the Eulerian solver. A more precise statement will

be made in the next section.

3.2. Ghost cells

The concept of ghost cells as used here is an extension for arbitrary boundaries of the commonplace

guard (or ghost) cells that surround a computational patch, i.e., a rectangular Cartesian grid. This practice

allows for the application of boundary conditions (BC). Additional rows of guard cells are used to

‘‘complete’’ the stencil of the external cells of a patch so that the solver does not need to be aware of the

boundary of its computational domain. The actual number of rows depends only on the stencil of the

Eulerian scheme.
The introduction of a level set function allows for the extension of this idea to an arbitrary boundary.

The Eulerian node (i; j) is a ghost node if the level set at that point satisfies

XG ¼ XE : 0
�

< ui;j 6uS

�
: ð6Þ

The corresponding cell can be partially or fully covered by the Lagrangian discretization XL.

The parameter uS depends exclusively on the stencil of the numerical scheme that is used to compute the

fluxes. For example, a second-order accurate essentially-non-oscillatory (ENO) scheme requires four nodes,

two on each side of the node that is being updated, to compute the numerical flux. The extent of the ghost
region should be at least 2 � Dx, since we cannot expect a cell boundary to lie exactly at u ¼ 0. We must

account for the motion of the EL-interface because a ghost cell can be ‘‘exposed’’ and become a real cell at

the next time step. Thus, in this example, the buffer area must be increased at least to uS ¼ 3 � Dx. This one-
dimensional argument can be extended to higher dimensions as long as the solver implements a dimension-

by-dimension integration.

According to Eq. (6), the ghost region has to be initialized (or populated) up to a distance uS ; the details

will be discussed in the next section. Note, however, that the coupling procedure is completely independent

of the patch integrator. We can think of it as setting the proper boundary conditions before advancing the
solution by one time step. Indeed, given a generic patch integrator, we require only two additions to the

code: (1) a test to compute the numerical flux only if u6uS; (2) a test to update the solution only if

u < 1 � Dx. The second point above is important because a ghost cell within one Dx from the EL-interface

can become a real cell after a time step. No more than one ghost cell layer needs to be updated since the

Courant–Friedrichs–Levy (CFL) condition is applied over all XR [ XG when estimating a stable time step

for the fluid solver. The CFL condition prevents the contact discontinuity at the EL-interface from

sweeping more than a fraction of a Cartesian cell when the solution is advanced.

3.3. Time discretization and temporal coupling

The time coordinate T ¼ ½ti; tf � is discretized (partitioned) by h ¼ ft0; t1; t2; . . . ; tng as follows:

T ¼
[N
1

sn; ð7Þ

where sn ¼ ðtn�1; tn�.
It is clear that t0 ¼ ti (the initial time) and tn ¼ tf (the final time). The set h represents instants in time

when the coupling is performed. Note that this can be different from the temporal discretizations used for the

Eulerian or the Lagrangian solvers. In fact, Eulerian solvers and Lagrangian solvers usually employ dif-

ferent time integrators, possibly with multiple steps.
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The current implementation of GEL defines the common time increment Dt which is allowable from

stability considerations for the Eulerian and Lagrangian grids, say DtE and DtL. This increment can be

computed at run time from the previous cycle of computation, i.e., Dtnþ1 ¼ minðDtnE;DtnLÞ. However, Noh

[1] observes that several applications typically have DtL � DtE, and allows DtE to be a (stable) multiple of

DtL.
To simplify the discussion on temporal coupling, we will refer to the set of equations integrated by the

Eulerian solver as E. Similarly, L refers to the set of equations integrated by the Lagrangian solver. The

solution of E depends on boundary conditions provided by L, which depends on the state of L, and vice
versa. The solution is assumed to be available at discrete times up to tn.

One can advance the solution by integrating E using LðtnÞ and by integrating L using EðtnÞ; this simple

approach is called concurrent time coupling and it is used in the VTF as it is more suitable for solution by

parallel computers than staggered methods. An example of a staggered method is as follows: E is integrated

using LðtnÞ and L is subsequently integrated using Eðtnþ1Þ. With staggered methods, only one set of

equations can be solved at any given time.

A viable alternative is called PC-Heun time coupling [32]. After the first integration, one can re-integrate

E using a combination (average) of LðtnÞ and Lðtnþ1Þ to get a new Eðtnþ1Þ and, concurrently, re-integrate L
using a combination (average) of EðtnÞ and Eðtnþ1Þ to get a new Lðtnþ1Þ. Using a predictor–corrector scheme

such as this is often not practical because of its high overhead in both CPU and memory requirements.

Numerical experiments using this scheme are presented in Section 5.2.

4. Coupling scheme

GEL is a boundary condition coupling scheme for Eulerian and Lagrangian solvers which are sharing
portions of their boundaries (their EL-interface). In this section, we will describe GEL, and variations of it,

in detail.

In formulating the boundary condition exchange, we make the following assumptions: (1) the EL-in-

terface is defined by the boundary as geometrically determined by the Lagrangian solver. It is identified by

u ¼ 0; (2) the Lagrangian solver uses a natural (pressure) boundary condition at the EL-interface; (3) the

Eulerian solver requires a no-flux boundary condition (with free-slip) at the EL-interface.

A consequence of the first assumption is that, as stated earlier, the EL-interface location is recomputed

as the Lagrangian boundary moves.
As for the second assumption, either displacements or force boundary conditions could be applied to the

boundary of a Lagrangian solver. The second assumption indicates that only a force boundary condition is

used. In our implementation, pressure is linearly interpolated in the Eulerian domain at the location of the

Lagrangian pressure control points and used to enforce the traction boundary condition. It is interesting to

note that applying a velocity boundary condition by using the Eulerian velocity at the boundary does not

work. This can be seen with the following one-dimensional experiment. Imagine a shock wave in XE

traveling towards an initially stationary solid XL. Since the solid is initially stationary, it will act as a re-

flective boundary to the Eulerian solver at the first integration, but this implies that the Eulerian flow
velocity at the boundary remains zero also after marching by one time step. This information is fed back to

the solid, which, therefore, remains still. Thus, there is no shock transmission in the Lagrangian domain

when we would expect one.

The last assumption implies that the Eulerian solver sees the domain computed by the Lagrangian

solver only as a moving boundary (completely ignoring all states in the interior of the Lagrangian

domain). The only information needed from XL is the velocity vector evaluated at the boundary.

This conclusion is similar to the one obtained in [33] for coupling compressible to incompressible

flow.
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4.1. Populating the ghost cells: fluid solver boundary condition

Population of a ghost cell states requires an extrapolation algorithm operating on the real flow. In the

following, the state that is extrapolated from XR is marked with the subscript E, whereas the state that is

evaluated from oXEL is denoted by W. The populated state in XG is denoted by G.

The level set u introduces a vector field of normals n ¼ ru=kruk. We define t to be a unit vector normal

to n. The projection of a ghost node over XEL is

xW ¼ xGði; jÞ þ uði; jÞn ð8Þ

and the corresponding boundary velocity VW can be found by interpolation of Lagrangian boundary values

at xW.
For the extrapolation algorithm, the approach of capturing the EL-interface as a contact discontinuity

(proposed in [10,9]) suggests that pressure and normal velocity should be continuous across the interface.

However, the choice of the extrapolation scheme is, in general, not unique. In this paper, we experimented

with different algorithms for extrapolating density, pressure, and the flow field velocity. These techniques

are described in the following sections, and they consist of one-sided constant extrapolation (injection), a

variation on constant extrapolation (reflection), and linear extrapolation (mirroring). Results for each of

these schemes can be found in the second part of this paper for one- and two-dimensional problems. The

current section is closed by a few considerations on the implementation of the boundary conditions as a
Riemann problem.

4.1.1. Constant extrapolation or injection

Constant extrapolation of a scalar quantity I can be achieved through advection by integrating the
Eikonal equation

It þ n � rI ¼ 0; ð9Þ

subject to the boundary condition

I ¼ IW on oXEL:

The numerical discretization of Eq. (9) can be implemented as a first-order upwind space discretization

with first-order accurate time integration [34]. The equation has to be solved for a number of pseudo time

steps until the ghost region has been fully populated [9,10]. Our experience is that this scheme is robust even

for irregular interfaces and shock interactions, since sharp variations in the advected quantities are
smoothed by the first-order advection algorithm. To reduce computational cost, advection needs to be

performed only on a tiny strip of the computational domain, enclosing the ghost region and the closest strip

of real flow region (say �Dx6u6us).

The prescription for populating a ghost node is

qG

VG

PG

0
@

1
A ¼

qE

ðVW � nÞnþ VE � ðVE � nÞn
PE

0
@

1
A; ð10Þ

which assigns the normal velocity of the Lagrangian boundary to the normal velocity of the ghost node. We
call this process the normal velocity treatment by injection.

4.1.2. Extrapolation by reflection

The extrapolation scheme by reflection is a variation of the extrapolation by injection. In the standard

treatment of an impermeable wall, the normal component of the velocity in a ghost cell is set to be

222 M. Arienti et al. / Journal of Computational Physics 185 (2003) 213–251



antisymmetric with respect to the normal velocity in the reference frame moving at ðVW � nÞn. Based on this

argument, we propose an alternate formula for VG

qG

VG

PG

0
@

1
A ¼

qE

2VW � n� VE � nð Þnþ VE � tð Þt
PE

0
@

1
A: ð11Þ

The normal velocity treatment by reflection relies on advection as the previous treatment. It is not a

linear extrapolation because it does not account for the distance from the wall to the ghost node. An
advantage over linear extrapolation is that this prescription avoids the overshoot of an extrapolated ve-

locity when the interface is very close to a real node. An advantage over injection is that the antisymmetric

treatment of normal velocity is a more accurate implementation of an impermeable wall.

4.1.3. Linear extrapolation or mirroring

Linear extrapolation in the ghost region can be performed by computing the mirror image x̂x in XR of the

(i; j) ghost node, xG [11,35]. This operation requires the normal distance of xG from oXEL, which is (with the

correct positive sign) the value uði; jÞ. Thus, the relation between x̂x and xG is provided by

x̂x ¼ xGði; jÞ þ 2uði; jÞn: ð12Þ

The prescription for populating the ghost state is formally identical to the one in Eq. (11), only now VE, qE,

PE are interpolated values (we use bilinear interpolation) at x̂x in XR.

It should be noted that extrapolation by mirroring is based on the assumption that the EL-interface is
moving at constant speed within a given time increment; in general, this is not true. A typical counter-

example is an explicit FE solver, where all nodes assume a constant acceleration in any given time step. One

can include acceleration effects by imposing a suitable pressure gradient in the ghost region. In one di-

mension, if €xxWðtÞ is the acceleration of the wall, we would have

PxðxW; tÞ ¼ �qðxW; tÞ€xxW: ð13Þ

However, complications arise when the flow is not smooth (a shock, even when smeared, is associated with

high acceleration) and implementation is difficult in two and three dimensions. Furthermore, one may

argue that since the state on the EL-interface is only interpolated to first-order at best, it is of little ad-
vantage trying to predict the flow behavior at the interface to better than first-order.

4.1.4. Coupling as a Riemann problem

In this section, we suggest an improvement of GEL via formulation of a Riemann problem at the EL-
interface. The implementation requires that the equations of state of the materials be communicated to a

software module which solves the Riemann problem at the interface. In the simplest case of a linearized

solver, knowledge of the stiffness (or the impedance) of the material on both sides of the EL-interface is

sufficient. In any case, this approach involves a more complicated coupling algorithm.

The Riemann problem can be understood as follows. Consider an initial jump discontinuity at x ¼ 0

separating two constant states,

Uðx; t ¼ 0Þ ¼ Ul for x < 0;
Ur for x > 0:

�
ð14Þ

Eq. (14) is an example of a shock-tube problem, where a hypothetical ‘‘membrane’’ situated at x ¼ 0

separates the two states at t ¼ 0. Without loss of generality, we take XR to be on the right of the membrane

and XL to be on the left. If we consider only the subdomain XL, this becomes a piston problem where the

entire domain is initially a constant state with a boundary condition at x ¼ 0.
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If the original shock-tube problem is to be solved as a coupled Eulerian–Lagrangian problem, then the

Lagrangian scheme solves the piston problem for an interval dt subject to a natural (pressure) boundary

condition Pp.

There is a unique driving pressure Pp for the piston problem that corresponds to the original shock-tube

problem. This is the boundary condition that needs to be applied to the Lagrangian solver if it were to

simulate the original system Eq. (14) correctly. It is natural to ask whether the pressure Pl corresponding to

the left state Ul and the pressure boundary condition Pp are equal. Rephrased in the context of GEL

coupling, is the pressure boundary condition to the Lagrangian solver the pressure of the fluid given by the
Eulerian solver? The answer is no, in general. In the case of a shock-tube filled with perfect gases having the

ratio of specific heats c, sound speed a and pressure P , with subscripts l and r denoting the left and right

states, Pl and Prmp are related by the shock-tube [17] equation

Pl

Pr

¼ Pp

Pr

1

"
� ðcl � 1Þðar=alÞðPp=Pr � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cr½2cr þ ðcr þ 1ÞðPp=Pr � 1Þ�
p

#�2cl=ðcl�1Þ

: ð15Þ

Thus, when there is a discontinuity in pressure across the EL-interface, the pressure boundary condition

(PpÞ assigned to the Lagrangian solver is not the pressure given by the Eulerian solver (Pl). In practice, large

jumps of pressure are often smeared and Pl=Pr � 1. In this limit, Pl is well approximated by Pp and solving the

Riemann problem at the interface to calculate Pp is not necessary. Furthermore, these pressure discontinuities

do not remain at the interface as they get convected awaywith the flow, and the resulting error is usually small.

5. One-dimensional tests

In this section, we will restrict ourselves to the analysis of one-dimensional test problems. Two-di-

mensional problems are discussed in Section 6.

The following results are obtained by using an essentially nonoscillatory local Lax–Friedrichs (ENO-

LLF) flow solver [36,37] on a Cartesian grid. A local Lax–Friedrichs form [36] is used to avoid entropy
violating shocks near sonic points, making the scheme very robust at the price of perhaps too much dis-

sipation to accurately capture all the flow features. Time marching is achieved through the total variation

diminishing (TVD) third-order Runge–Kutta method devised by Shu and Osher [36]. The time step Dt is
selected to account for the CFL stability condition.

We first consider a prescribed boundary motion to examine issues of conservation of mass and entropy

in isentropic flows. The next step is to couple the boundary motion to the flow in a simple fashion and

examine the problem of free expansion of a piston. The simplicity of this test case allows us to explore

different temporal couplings and coupling strategies. Then we study the oscillations of a spring-mass system
in a compressible gas. The problem is reducible to a nonlinear oscillator, and we compare trajectories of the

piston in the underdamped and overdamped cases with the numerical solutions of the corresponding or-

dinary differential equation. Finally, we examine wave interactions in a setting where the Lagrangian and

the Eulerian materials have identical acoustic impedance. This test, called the transparency test, assesses

how transparently waves can be transmitted between domains that differ only in their numerical modeling.

The Lagrangian modules were described previously in Section 2 of this paper.

5.1. Prescribed rigid boundary motion

Conservation is not guaranteed [7] by a scheme which does not take into account cut cells and the

motion of cell interfaces during a time step Dt. In this section, the convergence properties of the treatments

by reflection and injection are compared. Results for mirror flow extrapolation are also computed for
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completeness. In all cases, we show that the losses in mass and entropy decrease at least linearly with the

mesh size, i.e., with first-order convergence. For this smooth one-dimensional problem, quadratic reduction

of these errors could be achieved by an appropriate treatment of how boundary cells are cut by the interface

[11,12]. As noted earlier, these schemes are potentially cumbersome in higher dimensions and they tend to

provide only linear convergence in multi-dimensional simulations involving shocks [11].

We will consider a perfect gas confined between two rigid walls at xr ¼ 1:0 and at xl ¼ 0:5þ vlt þ al=2t2.
This problem has been previously considered by Forrer and Berger [11], who demonstrated second-order

convergence. Initial conditions are

qðx; 0Þ ¼ 1þ 0:2 cosð2pðx � 0:5ÞÞ;
vðx; 0Þ ¼ 2ð1� xÞvl;
P ðx; 0Þ ¼ qðx; 0Þc:

ð16Þ

If the left wall is moving leftward (vl < 0), an expansion takes place and the flow field is isentropic for all

times, sðx; tÞ ¼ sðx; 0Þ ¼ pðx; 0Þqðx; 0Þc ¼ 1:0. The numerical value of the entropy s can, therefore, be
monitored for error analysis.

We denote an initial value with the superscript i and a final value with the superscript f. Discrepancies in

mass Dm and entropy Ds at the final time are given by

Dm ¼
XniC
j¼1

qi
jjCjj

0
@ �

XnfC
j¼1

qf
jjCjj

1
A,XniC

j¼1

qi
jjCjj;

Ds ¼
XnfC
j¼1

sfj

��� � 1
���jCjj

,XniC
j¼1

jCjj;

ð17Þ

where jCjj is the length of that part of a computational cell Cj that lies in XR. The final time tf is chosen so

that the walls are located exactly at the interface between two grid nodes. Since, at that time, there are no

cut cells, the two equations above are exact estimates of the errors of a piecewise constant solution. Thus,

there are exactly niC cells belonging to XR at time ti and nfC cells at time tf . We also introduce a measure of

the error of the entropy at the left moving wall

DsW ¼ sfW
�� � 1

��; ð18Þ

where W is the index of the left boundary cell.
Equipped with these error estimators, we now consider two cases and study the convergence of the

results as the grid spacing h decreases. In all the computations, a fixed ratio dt=h ¼ 0:32 is used, corre-

sponding to a CFL number approximately equal to 0.6.

Case A. We set the left wall velocity vl ¼ �0:5 and the acceleration al ¼ 0. Results for different grid

refinements at tf ¼ 0:5 are shown in log–log plots in Fig. 4 (left column). Reference lines for linear and

quadratic convergence are also displayed.

For all the extrapolation schemes, the convergence rate is linear for Dm and quadratic for Ds,
whereas DsW displays an intermediate behavior. Mirroring gives the best performance in all the three
error indicators, particularly the value Dm which is an order of magnitude smaller than the value

obtained by using injection or reflection. This result is expected, as the linear extrapolation described in

Section 4.1.3 is designed to implement an impermeable boundary for the case of constant velocity of

the interface. However, we notice that mirroring is slower in achieving linear convergence of Dm and

that the rate of decrease of DsW is only linear, and not superlinear, as for the other two extrapolation

schemes.

M. Arienti et al. / Journal of Computational Physics 185 (2003) 213–251 225



Fig. 4. Convergence study for prescribed rigid motion. Left column: wall moving with constant speed (case A). Right column: wall

moving with constant acceleration (case B). Solid reference line indicates linear convergence; dashed reference line indicates quadratic

convergence.
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Case B. The left wall velocity is initially zero, while the acceleration is constant al ¼ �2:0. Results at

tf ¼ 0:5 are shown in log–log plots in Fig. 4 (right column). The convergence is again first-order for Dm and

second-order for Ds. The error in entropy at the wall, DsW, decreases linearly for reflection and mirroring,

and superlinearly for injection. In this situation of constant wall acceleration, the mass loss is slightly

smaller with the reflection treatment. This result suggests that none of the extrapolation schemes considered

here can be expected to minimize all error indicators for all possible tests. The role of interface acceleration

is clearly important for simulations of shock interactions at an EL-interface, and it is further investigated in

the following sections.

5.2. Free expansion

The free-expansion experiment is the simplest nontrivial test of GEL coupling. It is simple because an
exact solution is available; it is nontrivial because the physics of the problem has the fluid and the solid

tightly coupled together.

The setup of the free-expansion problem consists of a frictionless piston in a tube with a vacuum to the

right of the piston and an initially constant state to the left at pressure, density, and sound speed given by

P0, q0, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP0=q0

p
, c being the ratio of specific heats (see Fig. 5).

The solution to the problem can be simplified with the definition of the following time constant:

s ¼ 2mc0
P0ð1þ cÞ ; ð19Þ

where m is the mass per unit area of the frictionless piston. The speed of the piston and the pressure at the

interface are determined by the method of characteristics [17]. Writing t� ¼ t=s, the solution is given by

u
c0

¼ 2

c � 1
1

"
� 1

1þ t�

� �ðc�1Þ=ðcþ1Þ
#

ð20Þ

and

P
P0

¼ 1

1þ t�

� �2c=ðcþ1Þ

: ð21Þ

Fig. 5. Wave diagram for continuous piston withdrawal.
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The exact velocity and pressure are plotted in Fig. 6.

The simplicity of this test case allows us to explore different temporal couplings and coupling strategies.

Four cases are presented in this section.

1. Concurrent integration, normal velocity treatment by injection.

2. Concurrent integration, normal velocity treatment by reflection.

3. PC-Heun integration, normal velocity treatment by injection.

4. PC-Heun integration, normal velocity treatment by reflection.

In all cases, a third-order ENO solver is used for the solution of the fluid problem. For cases using
concurrent integration (cases 1 and 2), a third-order TVD time integration is used for the fluid and explicit

integration is used for the piston motion. For cases using PC-Heun integration (cases 3 and 4), a second-

order predictor–corrector method is used for the fluid. The motion of the solid is also written as a first-order

system and integrated with a second-order predictor–corrector method.

The grid size is compared against a characteristic length L,

L ¼ c0s ¼ 2c20m
P0ð1þ cÞ : ð22Þ

Values Dx=L of 0.2, 0.1, 0.05, and 0.025 are used for the convergence study, corresponding to 20, 40, 80, and

160 grid cells. The total time of the simulation is t� ¼ 2. A CFL number of 0.1 is used for all simulations.

Figs. 7 and 8 compare the four cases against the analytical solution for the pressure at the interface (Eq.

(21)) and the piston velocity (Eq. (20)), respectively. All cases converge to the analytical solution in pressure

at times sufficiently far from t ¼ 0. The L1 metric

kP � Pek1 ¼
Z

s
jðP � PeÞjds ð23Þ

is used to measure the distance between the exact solution Pe and the numerical solution P . Convergence
results are shown in Table 1.

It is observed that while all cases show first-order convergence, those where predictor–corrector time

coupling is used display better accuracy. Additionally, velocity treatment by reflection also improves

accuracy in this test problem. Two observations can be made from examining Fig. 7. All cases studied

overestimate the pressure at the beginning, and the reflection cases undershoot the exact profile (see the

Fig. 6. Nondimensional velocity of piston of the piston–air system and the nondimensional pressure at the piston–air interface.
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zoom window of the figure). The initial overestimate can be understood as follows. In the first time step,

the piston sees a pressure and accelerates but the fluid sees a stationary wall and no flow occurs; thus, the

pressure drop that would accompany the expansion lags behind the piston motion. In the next step, since
the Eulerian velocity is still zero and the piston has attained a finite velocity, reflection will assign

twice the piston velocity in the ghost region while injection assigns the piston velocity in that region. In

case 2, the ghost velocity is slightly too high and leads to a pressure drop, resulting in the undershoot

displayed in the close-up of Fig. 7.

5.3. One-dimensional spring-mass system

A spring-mass system contains the key features of the very simplest of Lagrangian schemes for treating

elastic solids.

Fig. 7. Nondimensional pressure computed at the piston–air interface plotted against analytical solution (1=DxE ¼ 40). The box on the

right is a close-up of the first iterations.

Fig. 8. Computed nondimensional piston velocity plotted against analytical solution (1=DxE ¼ 40). The box on the right is a close-up

of the solution for t� close to 2.
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The equation of motion for a one-dimensional spring-mass system is

m€xx ¼ PðtÞ � kðx � x0Þ; ð24Þ

where xðtÞ is the position of the spring, x0 is the equilibrium position, k is the stiffness, P ðtÞ is the pressure
applied at the piston face, and m is the piston mass per unit area. Using the method of characteristics [17],

we rewrite the equation of motion as

€xx þ x2
0ðx � x0Þ ¼

P0

m
1

 
� c � 1

2

_xx
c0

!2c=ðc�1Þ

: ð25Þ

At time t ¼ 0, the piston is at rest and the pressure of the fluid is uniformly P0. Recognizing x2
0 ¼ k=m as the

natural frequency of the harmonic oscillator, it is evident that Eq. (25) describes a nonlinear oscillator with

an equilibrium point at x ¼ x0 þ P0=k. To formulate the problem in nondimensional form, take L ¼ P0=k
and x0 to be the characteristic length and frequency, respectively. Then Eq. (25) becomes

X 00 þ X ¼ ð1� aX 0Þ2c=ðc�1Þ ð26Þ

with

a ¼ c � 1

2

x0L
c0

; ð27Þ

where X ¼ ðx � x0Þ=L and the derivative is taken with respect to s ¼ tx0.

When a � 1, linearization of Eq. (26) leads to an equation describing underdamped motion. With initial

conditions xð0Þ ¼ 0 and _xxð0Þ ¼ 0, the solution is

x
L
¼ 1� eð�c=ðc�1ÞÞax0t cos bx0t

�
þ c

c � 1

a
b
sin bx0t

�
ð28Þ

with

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

c � 1
a

� �2
s

: ð29Þ

Table 1

Results for the free-expansion problem

1=DxE Case Coupling Integration L1 error

20 1 Injection Concurrent 1:56	 10�1

20 2 Reflection Concurrent 6:74	 10�2

20 3 Injection PC-Heun 5:73	 10�2

20 4 Reflection PC-Heun 2:07	 10�2

40 1 Injection Concurrent 7:56	 10�2

40 2 Reflection Concurrent 3:45	 10�2

40 3 Injection PC-Heun 2:88	 10�2

40 4 Reflection PC-Heun 1:01	 10�2

80 1 Injection Concurrent 3:72	 10�2

80 2 Reflection Concurrent 1:73	 10�2

80 3 Injection PC-Heun 1:45	 10�2

80 4 Reflection PC-Heun 4:96	 10�3

160 1 Injection Concurrent 1:84	 10�2

160 2 Reflection Concurrent 8:70	 10�3

160 3 Injection PC-Heun 7:27	 10�3

160 4 Reflection PC-Heun 2:47	 10�3
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Although approximate, Eq. (28) suggests that for a large enough (say a > ðc � 1Þ=c), the solution becomes

overdamped, i.e., the trajectory does not exhibit oscillations.

We consider next a numerical solution of Eq. (26) with zero initial displacement and velocity. The

coupling algorithm uses concurrent integration and normal velocity treatment by reflection.

Case A. P0 ¼ 106 Pa, q0 ¼ 4kg=m
3
, k ¼ 107N=m and m ¼ 3kg=m

2
. For c ¼ 1:4, Eq. (27) gives a ¼ 0:062.

Case B. P0 ¼ 106 Pa, q0 ¼ 4kg=m
3
, k ¼ 2	 107N=m and m ¼ 0:02kg=m

2
. For c ¼ 1:4, Eq. (27) gives

a ¼ 0:53.
Results are shown in Fig. 9 (case A) and Fig. 10 (case B). Fig. 9 displays two different grid resolutions

(Dx=L ¼ 0:2 and Dx=L ¼ 0:1) both for first-order and second-order ENO. Note that in the coarsest case, only

about eight nodes are swept back and forth by the interface. The trajectory is reconstructed almost exactly,

Fig. 9. Computed trajectories of the piston in the underdamped spring-mass case (case A) are compared against the numerical solution

of Eq. (26) (labeled as ‘‘exact’’) for a piston initially at rest. The box displays a detail of the trajectories, magnified 45	, at s � x0 � 11.

Fig. 10. Computed trajectories of the piston in the overdamped spring-mass case (case B) are compared against the numerical solution

of Eq. (26) (labeled as ‘‘exact’’) for a piston initially at rest. The box displays a detail of the trajectories, magnified 25	, at s � x0 � 7.
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with a small phase error at later times. The box inside the plot magnifies the trajectory by a factor of 45. Since

the accuracy of the scheme at the boundary is expected to be of order Dx, it comes as no surprise that the

coupling with the second-order solver performs only slightly better than the one with the first-order solver.

For case B, the two grid resolutions are Dx=L ¼ 0:04 and Dx=L ¼ 0:02. In Fig. 10, the convergence is

again linear and we note a small phase error at later times. The close-up box magnifies the trajectory by a

factor of 25. This time, second-order ENO shows improved accuracy with respect to first-order ENO.

5.4. Transparency test

In this section, we propose a test problem for evaluating the accuracies of different coupling techniques.

A transparency test consists of a domain of a single material with a fictitiously introduced interface that

separates it into two abutting subdomains. Each subdomain is separately solved and updated so that
coupling between domains occurs only via boundary condition exchanges.

Clearly, the fictitious interface will be transparent to waves in the case of perfect coupling (hence the

name). Although the test is easily generalizable to higher dimensions, only one-dimensional tests are per-

formed here. We will refer to them as (1) the EL transparency test, where a shock wave travels from XE to

XL, and (2) the LE transparency test, where a shock wave travels from XL to XE.

5.4.1. The one-dimensional EL transparency test

In the EL case, we consider a shock wave of Mach numbers 1.2 and 1.5 initially propagating on the

Eulerian mesh. A fixed Eulerian grid size of DxE ¼ 0:05 and two different Lagrangian grid sizes, DxL ¼ 0:05
and DxL ¼ 0:025, are considered. Results of coupling using normal velocity treatment by injection and by

reflection are compared.

The problem has no natural length scale. Discretizing the solution introduces the Eulerian grid spacing
DxE and the two Lagrangian grid spacings (before and after compression) DxL1 and DxL2. From mass

conservation, the two Lagrangian length scales are related by DxL1=DxL2 ¼ q2=q1, where q1 and q2 are the

pre- and post-shock densities, respectively. Other relevant length scales include the width of the shock in

the Lagrangian domain, which depends on the artificial viscosity and artificial heat conduction models, and

the width of the shock in the Eulerian domain, which depends on the details of the Eulerian solver and is

typically three to five mesh points.

Representative results are shown in Fig. 11 for a shock Mach number 1:5, DxE ¼ 0:05 and DxL1 ¼ 0:025.
The plots show the spatial density profiles at selected times. The dotted line in the middle represents the
one-dimensional EL-interface. The Eulerian domain is to the left of the interface; the Lagrangian domain to

the right. The exact shock profile is shown as the solid line through the data. Every second data point is

plotted in the Eulerian domain, and every fourth data point is plotted in the Lagrangian domain to avoid

cluttering the figure. The coupling is performed using the injection method of Eq. (10).

We remark that the state in XE is quite uniform after the transmission, and that the EL-interface exhibits

‘‘good’’ transparency (a quantitative measure of error will be introduced later). Additionally, the shock

wave that forms in XL has the correct strength and position. The density profile in XL in the post-shocked

state is uniform except near the boundary, which exhibits the well-known effect of wall-heating [27] due to
artificial viscosity. Such wall-heating can be reduced or removed by adding an artificial heat flux.

The pressure computed by the Eulerian solver is nondimensionalized by a constant equal to the exact

post-shock pressure Ps. To assess the transparency of the EL test case, the following metric is used:

P
Ps

���� � 1

����
1

¼
Z

XE

P
Ps

����� � 1

�����dX: ð30Þ

Eq. (30) gives a measure of the distance between the exact Eulerian solution and the computed solution. All

errors quoted in this section use Eq. (30) evaluated at t ¼ 0:001 s.
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The errors of a subset of cases studied are given in Table 2. To give an idea of the size of the errors in
the table, the nondimensional pressure profile for the first case (corresponding to an error of 4:23	 10�4)

is plotted in Fig. 12. It can be seen that most of the contribution to the error comes from the initial

startup error, a consequence of the prescribed sharp shock profile smearing itself out across a few

computational cells. Within the range of shock strengths and grid sizes tested, we observe that the in-

terface behaved transparently with a small error in the solution, quite independent of the coupling

scheme used.

5.4.2. The one-dimensional LE transparency test

In the one-dimensional LE transparency test, a shock is formed in the Lagrangian domain. We will see

that shock waves no longer transmit across the EL-interface transparently. Accuracy is measured by

Fig. 11. Spatial profiles of density plotted at selected times for the EL transparency test. Eulerian solution is to the left of the dotted

line and Lagrangian solution to the right.
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computing the error in pressure in the Lagrangian domain after the shock has passed into the Eulerian
domain. The L1 norm of the error in pressure is given by

Table 2

Error analysis of the EL test

1=DxE 1=DxL1 Coupling Mach No. L1 error

400 200 Injection 1.5 4:23	 10�4

400 200 Injection 1.2 1:87	 10�4

400 400 Injection 1.2 1:31	 10�4

400 400 Reflection 1.2 1:35	 10�4

400 200 Reflection 1.2 1:81	 10�4

400 200 Reflection 1.5 4:69	 10�4

Fig. 12. A plot of the nondimensional pressure profile for the EL transparency test after shock transmission.

Fig. 13. One-dimensional LE (Lagrangian–Eulerian) transparency test setup (with mesh points shown).

234 M. Arienti et al. / Journal of Computational Physics 185 (2003) 213–251



P
Ps

���� � 1

����
1

¼
Z

XL

P
Ps

����� � 1

�����dX; ð31Þ

where the integral is approximated over the Lagrangian domain, XL. As in the previous error estimate, Ps is

a constant equal to the exact post-shock pressure.

Following the conventions in continuum mechanics, we will use X to represent the original (reference,

Lagrangian) coordinate. The setup is a one-dimensional ‘‘column of gas’’ of unit length divided into two
regions. The region 0:6 < X < 1 of the gas in the reference configuration is modeled by a Lagrangian solver.

The region 0 < X < 0:6 is modeled by an Eulerian solver (see Fig. 13). A shock is created in the Lagrangian

region by instantaneously increasing the right hand boundary (piston) velocity at time t ¼ 0.

At X ¼ 1:0, we have _XX ðtÞ ¼ �UpHðtÞ, where HðtÞ is the Heaviside step function, and Up is the piston

velocity. For a perfect gas, the Mach number Ms of a shock moving in an undisturbed medium (with sound

speed c1) is related to Up by [17]

MsðUpÞ ¼
Up

c1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Up

c1

2

þ 4
2

c þ 1

� �2
s ,

2
2

c þ 1

� �
: ð32Þ

For the LE test, the following parameters are considered: 1=DxE ¼ 200 and 400, 1=DxL1 ¼ 100, 200, and

400. A perfect gas equation of state with c ¼ 1:4 is used. Piston velocities of 100, 200, and 400m/s are

specified. The corresponding Mach numbers from Eq. (32) are Ms ¼ 1:22 and 1.48. Results of coupling
using normal velocity treatment by injection and by reflection are compared.

The density, velocity, and pressure profiles of a representative case with 1=DxE ¼ 200 and 1=DxL1 ¼ 200

at Ms ¼ 1:22 are presented. Fig. 14 shows the results obtained with coupling by reflection and Fig. 15 the

results obtained with coupling by injection.

It is clear from Figs. 14 and 15 that the EL-interface causes spurious reflections as the shock wave passes

from the Lagrangian domain into the Eulerian domain. The L1 error in pressure as computed by Eq. (31)

measures the absolute area of the ‘‘blip’’ in pressure that appeared after the shock transmission through the

EL-interface. It is clear from the figures that the blip is smaller in the injection case.
The errors as a function of time are shown in Fig. 16 for the two cases plotted in Figs. 14 and 15.

The vertical dotted line depicts the time of arrival of a perfectly sharp Mach 1.22 shock to the EL-

interface.

The error before the shock reaches the interface is due to the smearing of the shock in the La-

grangian domain. It grows as the shock widens to its natural width (which is a function of the ar-

tificial viscosity parameters) and then levels off. After transmission, the error in pressure (in the

Lagrangian domain) reaches a final value quickly. If the interface was truly transparent, this error

would be zero. The error analysis (Table 3) gives the error of various test cases at the final simulation
time of 2ms.

The explanations for these spurious reflections are as follows. As the shock travels across the EL-in-

terface, all the gradients in the ghost region are set to zero through the advection algorithm. In other words,

the smeared shock wave is truncated at the EL-interface. As a result, the Eulerian solver does not see the

full extent of the incoming wave. Most notably, the removal of the pressure gradient in the ghost region

reduces the acceleration effect that accompanies a shock wave. Therefore, the pressure as seen by the

Eulerian solver does not build up as quickly as it should and this gets fed back as a traction boundary

condition to the Lagrangian solver. This explains why there is a rarefaction-like reflection back into the
Lagrangian domain as the shock wave passes through the interface.

Another observation is that the normal velocity treatment by injection results in a lower error than the

treatment by reflection. A likely explanation is that the reflection strategy, which is designed to approximate

the effect of a nonaccelerating boundary, filters (or averages) out acceleration effects more than the injection
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Fig. 14. Transparency test, shock wave generated in Lagrangian region and transmitted to Eulerian region. Normal velocity treatment

by reflection is used.
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Fig. 15. Transparency test, shock wave generated in Lagrangian region and transmitted to Eulerian region. Velocity BC by injection

used.
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method does. This filtering is believed to play a significant role because in this transparency test the EL

boundary is subjected to very high acceleration upon arrival of the shock (directly proportional to the

steepness of the smeared shock wave).

Numerical results are shown in Table 3. Note that these errors are about an order of magnitude larger
than those shown in Table 2 for the EL transparency test.

5.4.3. Transparency test conclusions

A series of experiments was done to test grid effects by refining the Lagrangian and the Eulerian grids.
The effect of shock width and normal velocity treatment was also examined in separate tests. It is found that

by simultaneously refining the grids, little gain in accuracy (as measured by the L1 norm pressure) can be

obtained. The most dramatic improvements (in terms of reducing the ‘‘blip’’) occur through refining the

Eulerian grid and coarsening the Lagrangian grid. This can be explained by the argument in the previous

section about the sharpness of the shock wave in the Lagrangian region.

A shock in the Eulerian solver has a natural width depending on the type and the order of the scheme. A

shock in the Lagrangian solver also has a natural width associated with the amount of artificial viscosity

and artificial heat conduction. A natural question arises whether matching these two widths is important.
The answer appears to be negative. The reflection seems to depend most strongly on the amount of ac-

celeration undergone by the EL-interface. This acceleration can be decreased by:

Fig. 16. Error in pressure: reflection vs injection

Table 3

Error analysis for the LE test

1=DxE 1=DxL1 Coupling Mach No. L1 error

200 200 Reflection 1.22 5:07	 10�3

200 200 Injection 1.22 1:73	 10�3

200 100 Reflection 1.22 4:34	 10�3

200 400 Reflection 1.22 5:74	 10�3

400 400 Reflection 1.22 2:52	 10�3

400 200 Reflection 1.22 2:17	 10�3

400 400 Injection 1.22 0:87	 10�3

200 200 Injection 1.48 2:97	 10�3
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1. Coarsening the Lagrangian grid. Since for given values of the parameters used in the artificial viscos-

ity, the shock has a constant mesh width (e.g., 5 mesh cells); a grid coarsening leads to a thicker shock

(e.g., 5Dx) which reduces the pressure gradient in the smeared profile.

2. Increasing artificial viscosity, which smears the shock over a larger number of mesh cells.
In addition, as the Eulerian grid is refined, a more accurate interpolation of pressure on the Eulerian grid

onto the EL-interface is obtained. As a result, refining the Eulerian mesh improves the transmission of

shock waves through the EL-interface.

6. Two-dimensional tests

The following results are obtained by using the same ENO-LLF Cartesian solver described in the
previous section. The one-dimensional scheme is extended to higher dimensions via a dimension-by-di-

mension technique [38]. We first consider the interaction of a shock with walls modeled by Euler–Bernoulli

beams. Again, we verify that mass is conserved to first-order in the grid resolution. This result is confirmed

when we examine one of the few two-dimensional tests for moving boundaries available in the literature,

the cylinder lift-off problem. Finally, the supersonic (superseismic) problem is described. We prove that a

steady self-similar solution exists in the reference frame of the shock generating the load. Also, we show

that numerical solutions of a simple channel flow evolve to this steady solution and that the shock de-

flection angles converge to the values predicted by the theory.

6.1. The inflatable bladder

In this experiment, a shock enters a two-dimensional cavity with the boundaries modeled by a system of

Euler–Bernoulli beams. Although the axial symmetry of the problem is evident, no effort is made to enforce
it in order to provide a basic test of the correctness of the implementation.

The test uses the following setup. The cavity, or deformable channel, has an upper and lower wall with

identical properties. Each wall is composed of two very rigid shells located on the left and on the right to

form the inlet and the outlet of the channel. A flexible shell is mounted between them at the center. The

shells are modeled by 10 and 50 beam elements, respectively. The boundary conditions on the left are

supersonic inflow and on the right, a reflecting wall.

At time t ¼ 0, the cavity is undeformed, with the walls aligned in the horizontal direction and the shock

positioned in the inlet. The pre-shock load acting on the inner side of the shells is balanced by an equal
external pressure on the outside, so that the beams are in equilibrium. Fig. 17 displays the cavity at a later

time. The rigid inlet and outlet shells are undeformed, but the upper and lower central shells have been

deflected outward substantially by the post-shock pressure.

We define jCi;jj as a measure of the volume of each computational cell (possibly cut) where u < 0. The

quantity

Dm ¼
X
i;j

qi;jjCi;jj
 

�
X
i;j

qi;jjCi;jj
� �

0
� tAiðquÞi

!,X
i;j

qi;j Ci;j

�� ��� �
0

ð33Þ

gives an indication of the amount of mass that is lost (or gained) in the process. The estimate of jCi;jj
introduces only a higher order error in Eq. (33) at cut cells when evaluating the polygon intersection area.

The next series of figures illustrates the results in the context of a grid refinement study. A shock

propagates from left to right through a perfect gas ðc ¼ 1:4Þ at M ¼ 3, with pre-shock pressure P0 ¼ 107 Pa
and density q0 ¼ 100kg=m

3
. The shock is initially located at xs ¼ 0:03m.

The two central shells have a cross-sectional area A ¼ 6:35	 10�3m2, length l ¼ 0:6m, moment of in-

ertia I ¼ 2:13	 10�8m3, and cross-sectional mass m ¼ 49:53kg=m. This set of parameters is chosen to
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generate a large deformation of the shells in a characteristic time s ¼ tc0=L (L ¼ 0:7m is the total length of

the channel) of order unity.

A contour plot of density at s ¼ 0:5345 is shown in Fig. 17 for a 201	 201 grid. The shock has already

been reflected from the closed end and is now moving leftward; at the left inlet, an expansion fan is ob-

servable.

The contour plot has 17 levels equally spaced, from 50 to 700kg=m
3
. In Fig. 17, the contour plot also

shows the ghost region, extending for a few cells beyond the line marked as level set¼ 0. Note that this line

defines the boundary, as reconstructed on the Cartesian grid. The outermost line in Fig. 17 is simply the

somewhat fuzzy division between the ghost region and the empty computational domain.

The test is executed with three different grid resolutions: 51	 51, 101	 101, and 201	 201. The history

of DmðtÞ is depicted in Fig. 18. High frequency oscillations are probably due to errors in estimating the area

of the cut cells. Low frequency oscillations are related to actual mass loss or production, and their am-

plitude decreases with Dx decreasing.

Fig. 17. Density contours of the inflatable bladder problem solution are displayed at time s ¼ 0:5345.

Fig. 18. The normalized mass loss is displayed as a function of time s and parameterized by the grid refinement.
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6.2. Cylinder lift-off

One of the few two-dimensional tests for moving boundaries available in the literature (albeit without

experimental validation) is the so-called cylinder lift-off problem [7,11]. We compare our convergence

analysis results with those from [11].

In this problem, a rigid cylinder initially resting on the floor of a two-dimensional rectangular channel is

lifted by a shock at Mach 3 due to the asymmetric reflection of the incident wave.

The domain has dimensions 1:0	 0:2m, with the initial shock front positioned at distance 0:08m from

the left boundary. The remainder of the duct is filled by the same perfect gas (c ¼ 1:4) at rest, with pressure

1:0Pa and density 1:4kg=m
3
. The top and bottom of the domain are rigid walls, whereas the left boundary

is set to the post-shock state (supersonic inflow) and the right side to zero gradient outflow.

The cylinder has radius 0:05m and center initially located at (0.15m, 0.05m); its density is 10:77kg=m
3
.

Fig. 19 displays pressure contours of the initial condition and at two later times. The CFL number is

approximately 0.5 (a fixed ratio dt=h ¼ 0:1s=m is used).

The center of the cylinder is monitored at fixed times to verify the convergence of the results as the

Cartesian mesh is refined (Fig. 20). At the final time, tf ¼ 0:3282s, indicated by Forrer and Berger, our

cylinder has already reached the top of the domain, so here we take a shorter final time tf ¼ 0:30085s which
roughly corresponds to the time that the cylinder reaches the top of the channel.

Fig. 20 shows the results of our convergence study. The normalized mass loss Dm computed from Eq.

(33) is plotted in a log–log diagram versus the inverse of grid refinement 1=h (top figure of Fig. 20). The

cylinder�s x- and y-coordinates are displayed in the middle and bottom plots.

Fig. 19. Cylinder lift-off,k
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In the range of grid refinement between 1=h ¼ 100 and 1=h ¼ 1000, extrapolation by injection results in

the slowest approach to a linear convergence rate. The other two extrapolating schemes perform slightly

better. The slope between the two last points (1=h ¼ 800 and 1=h ¼ 1000) in the Dm diagram is 0.96 for

reflection, 0.97 for mirroring, and only 0.94 for injection. The values of Dm listed in [11] are comparable

Fig. 20. Convergence study for cylinder lift-off. Top: normalized mass loss. Center: final position of cylinder�s center (x-coordinate).
Bottom: final position of cylinder�s center (y-coordinate).
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with the ones reported here. The difference in the convergence behavior between injection on one side and

reflection and mirroring on the other is also visible in the plots of the x- and y-trajectories of Fig. 20.

6.3. Supersonic (superseismic) step load moving over a half-space

In this section, a verification test consisting of a compressible fluid interacting with an elastic solid is

described. We consider the effect of a step load of amplitude P traveling with speed Us across an elastic half-

space (Fig. 21). The load is produced by a shock propagating in the fluid occupying the adjacent half-space

below the elastic material. The value of this loading situation is that the deformation of the elastic solid

affects the fluid flow by changing the shock angle so that the full fluid–solid coupling model is tested.

It is convenient to treat the two half-spaces separately, looking for a relation connecting P to the plane

deflection, h. In Section 6.3.1, results from the theory of propagation of disturbances in elastic materials are
specialized to a case where steady-state solutions exist. In Section 6.3.2, the standard shock deflection

relations for a perfect gas are used. It is assumed that no reflected shock exists in the gas.

Under the conditions described above, a time-independent similarity solution exists in the frame of the

traveling shock. The solution is obtained by imposing continuity and mechanical equilibrium at the in-

terface. In Section 6.3.3, we validate the coupling algorithm against the exact Mach number-shock de-

flection relation that is derived from this theory.

6.3.1. Elastic solid half-space

The load P in Fig. 21 is called superseismic when Us is larger than the speed of propagation of dis-

turbances in the elastic material, a situation that is encountered in studies on the effect of very strong blast

waves propagating along the surface of the Earth. This test also has a direct relevance to high explosive

applications, since it models the interaction of the leading shock front with the metal casing in a cylinder
test experiment.

Bleich [39] investigated wave systems due to superseismic loads over elastic–plastic and granular ma-

terials, and we will follow his approach to analyzing the wave system and boundary deflection in the elastic

region shown in Fig. 21. In the present study, we will restrict our attention to a linear elastic material.

The present analysis considers the case of plane strain (ez ¼ 0) in an isotropic, homogeneous, linearly

elastic medium subject to compression (�P ). The load is applied in the undeformed configuration to be

consistent with the FE solver.

Fig. 21. Superseismic step load: p and s wave systems (above) and oblique shock (below).
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In an elastic solid, stress waves propagate at two different speeds, corresponding to the propagation of

dilatational (s) and distortional (p) disturbances [40]: cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 2lÞ=q

p
, cS ¼

ffiffiffiffiffiffiffiffi
l=q

p
. The parameters k and

l are the Lam�ee constants, and q is the density of the medium. Following convention, we will refer to these

waves as p and s waves, respectively.

Since the superseismic load travels faster than both the p and s disturbances in the elastic material, two

oblique waves radiate out from the front of the step load. They form characteristic angles with the

boundary of the half-space

tan aP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

s =c
2
P � 1

q
ð34Þ

and

tan aS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

s =c
2
S � 1

q
: ð35Þ

Fig. 21 displays the elastic solid half-plane (regions 0, 1 and 2) in the upper part, and the compressible

flow half-plane (regions 3 and 4) in the lower part. The undisturbed region in the solid is labeled with 0; 1 is

the region between the p and s fronts and 2 is the region behind the s front. The pre-shocked state in the

fluid is 3 and the shocked state is 4.
At the p front, we expect discontinuities in the normal and tangential stresses. Call the normal dis-

continuity at the p front Dr. The normal to the p front naP indicates one principal direction of the stress

tensor rI ¼ Dr. The additional conditions of plane strain and no distortion determine a state of uniaxial

strain (note that indices I, II, III here designate the principal stresses and directions)

rII ¼ rIII ¼
m

1� m
Dr: ð36Þ

In region 2, the load is applied in the direction perpendicular to the outer surface, nd. This assumption is

consistent, since we plan to model the step load by an inviscid shock. Thus, nd is also a principal axis of the

stress tensor. By imposing equilibrium over an element at the loaded surface, we find rI ¼ �P . The second
principal stress must be proportional to P also; we define R so that rII ¼ RrI ¼ �RP .

To determine the unknowns Dr and R, Bleich uses the continuity of normal and tangential stresses at the

shear front (s front) and the equality rIII ¼ rIII. For a load P applied in the undeformed configuration (i.e.

in the direction of the y axis),

Dr ¼ � Pð1� mÞ
N

cos 2aS ð37Þ

and

R ¼ �1þ cos 2aS

N
ð38Þ

with

N ¼ cos2 aS þ ð1� 2mÞ cos2ðaS � aP Þ � 1þ m: ð39Þ

The derivation of these quantities is given in Appendix A.
With the state of strain known, one can calculate the deflection d as a function of the load applied, P (see

Appendix A for details). We find that the velocities in the elastic solid at the interface are

up
vp

� �
¼ Usð1� 2mÞ P

4lN
cos 2aS � cos 2 aP � aSð Þ

sin 2aP

� �
: ð40Þ
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The deflection is given by

tan d ¼ vp
Us þ up

: ð41Þ

6.3.2. Compressible fluid half-space

The flow Mach number is defined as Ms ¼ Us=cgas, cgas being the speed of sound in the undisturbed
medium, region 3 in Fig. 21. The angle b formed by the shock can be computed from geometrical con-

siderations as a function of the deflection of the flow #. For a perfect gas with specific heat ratio c, we have
(cf. for instance [17]) cgas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cPgas=qgas

q
and

tan# ¼ 2 cot bðM2
s sin

2 b � 1Þ
ðc þ 1ÞM2

s � 2ðM2
s sin

2 b � 1Þ
: ð42Þ

The corresponding jump in pressure DPs is

DPs

Pgas

¼ 2c
c þ 1

ðM2
s sin

2 b � 1Þ: ð43Þ

Continuity conditions and mechanical equilibrium at the interface couple the two media by imposing h � d
and P � DPs. For a given Us, Eqs. (40)–(43) form a system of nonlinear equations in the unknowns d, b, and
P .

The exact solution of Eqs. (40)–(43) can be represented as the Ms � b diagram (solid line) in Fig. 24.

Along this locus, for a given incident Mach number Ms, there exists a unique shock angle b such that no

reflected shock and the set of two transmitted waves (p and s) exist. The broken line on the left of the

diagram is the boundary Ms ¼ cP=cgas; superseismic solutions are possible only to the right of this line. In

the following section, we test the coupling algorithm (with extrapolation by reflection) linking our ENO

and FE solvers to find this locus of single deflections.

6.3.3. Validation

A physically meaningful superseismic coupling occurs when the acoustic impendances of the two ma-

terials are comparable, such as in the loading of metal plates with solid explosives.

For the elastic solid, we choose properties similar to that of copper, with Poisson�s ratio m ¼ 0:33, density
q ¼ 8970kg=m

3
, and Young�s modulus E ¼ 110	 109 Pa. For the fluid, we find that a high explosive

model would greatly complicate this study and obscure the original purpose of the superseismic problem.

We then use a perfect gas (c ¼ 1:4) with an artificially high density (qgas ¼ 1000kg=m
3
) and pressure

(Pgas ¼ 2:584	 109 Pa).

We consider the entire assembly, gas and ‘‘copper’’, to be under hydrostatic pressure initially. Since we

are solving the linear elastic model of the solid, it is possible to superimpose a uniform static load without

altering the dynamic response. The traction at the interface, DPs, can then be computed by subtracting Pgas

from the interpolated Eulerian pressure field (i.e., the undisturbed flow field applies zero pressure to the

solid). At the mesh boundaries that are not in contact with the gas, the solid is unconstrained. The
boundary conditions for the Eulerian solver are supersonic inflow on the left side and supersonic outflow on

the right side.

The Eulerian domain is a rectangle large enough to contain the EL-interface portion of the deforming

FE boundary for the duration of the simulation. The shock (moving from left to right) is initially parallel to

the interface and the undeformed FE domain is a second rectangle, subdivided in quadratic triangles.

When the interface is a rigid wall, the shock maintains the given speed and orthogonality to the interface,

and the solution is a simple channel flow. In this problem, the interface is not rigid, and the deformation
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behind the shock generates a transverse expansion wave. A transition occurs, with the front lagging at the

interface, until the shock tilts by an angle b � p=2.
In the vicinity of the shock foot, no length scales are present and the solution is self-similar and steady in

a reference frame traveling with Us. The external boundary conditions of the two solvers and the initial

location of the shock affect the solution, but their effect is small in the supersonic flow region behind the

shock. The final shock inclination depends only on the deflection d of the solid and, therefore, it is only a

function of the strength of the shock and of the properties of the elastic material.

An approximately steady configuration is displayed in Fig. 22. The plot shows contour levels of shear
stress in the upper Lagrangian mesh and contours of pressure in the lower Eulerian grid. The velocity

vectors on the Cartesian grid are plotted in a frame traveling with the shock. Disturbances due to the initial

transient appear on the left of the domain, but they do not affect the supersonic flow ahead. The initial

Mach number for this case is Ms ¼ 4:5; the steady value (as derived from post-shock conditions) is

Ms ¼ 4:40� 0:01. The shock is tilted by an angle 2:77�� 0:07�.
A vertical section of the Lagrangian data of the previous plot is displayed in Fig. 23 in the undeformed

configuration. The components of the stress tensor are compared against the predicted profile. Eqs. (34)

and (35) give angles of the p and s fronts equal to 30.62� and 14.87�, respectively.
This case is computed on a Cartesian ½�0:38; 0:38� 	 ½�0:35; 0:41� domain, with grid spacing

DxE ¼ 0:0038m (E1 mesh). The undeformed FE domain is ½�0:40; 0:40� 	 ½0:0; 0:08� with average node

distance DxL ¼ 0:002m (L1 mesh). In the main plot of Fig. 24, we compare data points from similar

simulations against the Ms–b curve (solid line). The labels E2 and L2 indicate two coarser discretizations

(by a factor of 2) of the Eulerian and Lagrangian domains.

Uncertainties in our results are due to the fact that d, Ms, and b are not directly available from the

numerical simulation. They are found first by evaluating the post-shock conditions from slices of the

computational domain, and then by numerically solving Eqs. (41)–(43). Since the interface deflection is
quite small, the main source of error is introduced when measuring the vertical velocity vp. To assess the

magnitude of the uncertainties, we refer to the standard deviation (D) of the post-shock grid values with

respect to the sample average (indicated by an overbar). A simple error analysis derived from Eqs. (41)–(43)

shows that, to order d,

Fig. 22. Detail of the flow field behind the shock for initial Mach number 4.5. Pressure (Eulerian, bottom half) has 10 levels from

3:	 109 to 120:	 109 Pa; shear (Lagrangian, upper half) has 15 levels from �50:	 109 to 40:	 109 Pa. The velocity vectors on the

Cartesian grid are plotted in a frame traveling with the shock.
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Dd ffi
Dvp

vp
d; ð44Þ

Db ffi ðc � 1Þ
2

Dd: ð45Þ

The uncertainty in d can be partially corrected by measuring the slope of contour 0 of the distance function,

but it cannot be neglected. The error in the estimate of Ms tends to be smaller,

DMs
ffi 1

M s

c þ 1

4

DP

Pgas

: ð46Þ

Fig. 23. Stress profiles at x ¼ 0:10m. The location of the leading edge of the deflected portion of the interface is estimated to be

x ¼ 0:306m in Fig. 22. The components of the stress tensor are normalized by the magnitude of the effective applied load.

Fig. 24. Shock velocity–boundary deflection diagram for the case of superseismic load (Us > cP ). The self-similar solution is plotted

against the estimated values of Ms and b from different discretizations (E1, E2, L1, L2). The insets display the results of two con-

vergence studies (from the coarsest level 0) for initial Mach numbers 3 and 8. Error bars are computed from Eqs. (44)–(46).
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We conclude this section with the results of two refinement studies, for initial Mach numbers 3 and 8,

also displayed in Fig. 24. In these two cases, the Cartesian domain is ½�0:38; 0:78� 	 ½�0:35; 0:21� and the

undeformed FE domain is ½�0:40; 0:80� 	 ½0:0; 0:08�. At level 0, DxE ¼ 0:015m and DxL ¼ 0:016m; levels 1,

2, and 3 correspond to successive refinements of both meshes by a factor of 2.

The scale in both sub-plots is greatly magnified, showing the need of resolving the shock inclination

within small fractions of a degree. Increasing the resolution enables us to have a greater precision by av-

eraging over larger samples. This results in decreasing the uncertainties in our parameters, but, since the

problem is self-similar, the solution at a fixed mesh point number is independent of the resolution. From
Fig. 24, no conclusions can be drawn regarding the rate of convergence of the mean values to the known

analytical solution. However, we verify that, within the errors estimated above, the data points are in-

crementally closer to the reference solution as the resolution is increased.

7. Conclusion

In certain multi-physics simulations (e.g., the cylinder test problem), it is very difficult and often im-
possible to treat the entire domain with either an Eulerian solver or a Lagrangian solver. In this paper, we

have presented an Eulerian–Lagrangian coupling scheme for coupling these solvers and demonstrate its

accuracy with a variety of test cases. This scheme is shown to have accuracy comparable to more so-

phisticated schemes incorporating cut cells. It is robust and a large class of problems may be solved without

any one-off modifications or ad hoc tunable parameters. However, the scheme�s flexibility is perhaps its

greatest strength. It allows stand-alone Eulerian and Lagrangian solvers to perform fully coupled simu-

lations with minimal addition and virtually no modifications. This flexibility is extremely important as it

facilitates the development of a modular problem solving environment for multi-physics problems.
A set of benchmark exercises has also been produced. Tests that are available in the current literature for

coupling algorithms have been reproduced showing that the accuracy at the boundary is at worst first-order

in the grid resolution, in one and two dimensions. Also, we introduced novel verification tests to assess the

performances of the coupling scheme in dynamical problems. Particularly, we proposed the transparency

test to assess whether spurious oscillations exist in wave interactions when the Lagrangian and the Eulerian

material have identical acoustic impedence. We also presented the superseismic loading problem as a two-

dimensional test involving full coupling of a Lagrangian solid (modeled as linearly elastic and isotropic)

and an Eulerian compressible gas (modeled as a perfect gas). We proved that a steady self-similar solution
exists in the reference frame of a shock when the shock speed is greater than the speed of propagation of

dilatational disturbances in the bulk of the solid. We also showed that numerical tests starting from a

supersonic (superseismic) channel flow evolve to this steady solution and that the shock deflection angles

extracted from these simulations converge to the values predicted by the theory.

Acknowledgements

We thank Dan Meiron, Julian Cummings, Ravi Samtaney, Raul Radovitzky and Michael Aivazis (all at

Caltech) for their contributions to software development, numerical algorithms, and many constructive

suggestions. In particular, Ravi Samtaney suggested and first demonstrated the use of reflection-type

boundary conditions as an alternative to injection.We acknowledge the very substantial contributions byRon

Fedkiw (Stanford) in the initial stages of this work. He was extremely helpful in sharing his knowledge and

played a key role in introducing us to the level set and ghost fluid methods through his tutorials and software.

This work was carried out at Caltech ASCI ASAP Center of Excellence ‘‘Center for Simulation of Dynamic

Response of Materials’’ and funded by Contract B341492 under DOE Contract W-7405-ENG-48.

248 M. Arienti et al. / Journal of Computational Physics 185 (2003) 213–251



Appendix A

In this appendix, we derive R, Dr, and the Lagrangian velocity vector u. The principal stresses in the

uniform region aS < a < aP are

rI ¼ Dr

and

rII ¼ rIII ¼
m

1� m
Dr:

The normal stress rn and the tangential stress rt with respect to the s front can be obtained from rI and rII

through rotation of an angle ðaS � aP Þ as

rn ¼ Dr cos2 aSð
h

� aP Þ þ
m

1� m
sin2 aSð � aP Þ

i
and

rt ¼ Dr sin2 aSð
h

� aP Þ þ
m

1� m
cos2 aSð � aP Þ

i
:

Similarly, the principal stresses in the uniform region a < aS are

rI ¼ �P

and

rII ¼ RrI

so that rn and rt can also be written as

rn ¼ �P cos2 aS

�
þ R sin2 aS

�
and

rt ¼ �P sin2 aS

�
þ R cos2 aS

�
:

Since there is no discontinuity in the normal and tangential stresses at a shear front, the above expressions
for rt and rn can be equated, giving the result

Dr ¼ � Pð1� mÞ
N

cos 2aS ;

R ¼ �1þ cos 2aS

N
;

and

N ¼ cos2 aS þ ð1� 2mÞ cos2ðaS � aP Þ � 1þ m:

In the following, we derive the expression for the Lagrangian velocity vector u ¼ ðup vpÞT in region 2

(refer to Fig. 21 for notation). The continuity relation for an isotropic medium can be formulated as

c ½F n�½ � þ ½u�½ � ¼ 0:

The double brackets ½½��� denote the jump across a discontinuity of normal n; c is the speed of the front and

F the deformation gradient tensor.
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For the p wave, the uniaxial strain is

�I ¼ Dr=k

where

k ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ ¼

2ð1� mÞl
ð1� 2mÞ :

The normal to the p front is naP ¼ ðsin aP cos aP ÞT and the jump in the x–y coordinate system is

½u�½ �P ¼ �cP
Dr
k

sin aP

cos aP

� �
:

At the s front, there is only a discontinuity in shear. Referring to the normal naS ¼ ð� sin aS cos aSÞT, the
shear deformation in region 1 is

cnt ¼ � Dr
k cos 2aS

cos 2 aPð � aSÞ sin 2as

and the shear deformation in region 2 is

cnt ¼
Dr
k

sin 2ðaP � aSÞ:

The jump in shear deformation at the s front is

½cnt�½ � ¼ Dr
k cos 2aS

sin 2aP

and

½F n�½ � ¼ cnt½ �½ � 0

1

� �
:

In the x–y reference frame, this is

½u�½ �S ¼ cS
Dr
k

sin 2aP

cos 2aS

cos aS

� sin aS

� �
:

Now recall that cP ¼ Us sin aP , cS ¼ Us sin aS , and that region 0 is undisturbed. In linearized elasticity, we can

always sum the two contributions at the s and p fronts, so that the vector u in the x–y reference in region 2 is

u ¼ Usð1� 2mÞ P
4lN

cos 2aS � cos 2 aP � aSð Þ
sin 2aP

� �
:
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