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Abstract

We present a numerical method for coupling an Eulerian compressible flow solver with a Lagrangian solver for fast
transient problems involving fluid—solid interactions. Such coupling needs arise when either specific solution methods or
accuracy considerations necessitate that different and disjoint subdomains be treated with different (Eulerian or La-
grangian) schemes. The algorithm we propose employs standard integration of the Eulerian solution over a Cartesian
mesh. To treat the irregular boundary cells that are generated by an arbitrary boundary on a structured grid, the
Eulerian computational domain is augmented by a thin layer of Cartesian ghost cells. Boundary conditions at these cells
are established by enforcing conservation of mass and continuity of the stress tensor in the direction normal to the
boundary. The description and the kinematic constraints of the Eulerian boundary rely on the unstructured Lagrangian
mesh. The Lagrangian mesh evolves concurrently, driven by the traction boundary conditions imposed by the Eulerian
counterpart. Several numerical tests designed to measure the rate of convergence and accuracy of the coupling algo-
rithm are presented as well. General problems in one and two dimensions are considered, including a test consisting of
an isotropic elastic solid and a compressible fluid in a fully coupled setting where the exact solution is available.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is a variety of numerical methods today that can be used to tackle multi-material mechanics
problems involving both fluid and solid motions as well as their interactions. Traditionally, fluid dynam-
icists have favored Eulerian methods while solid mechanicians prefer Lagrangian methods.

It is clear that a large class of applications is neither ideally suited for a pure Lagrangian nor a pure
Eulerian approach. In a Lagrangian calculation, the mesh points correspond to elements of mass in the
material and their trajectories follow the particle paths of the material elements. Thus, the position of a
boundary is automatically calculated. Since the initial accuracy of the approximation is generally main-
tained throughout the computation, Lagrangian schemes have proven to be very accurate for a constant
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number of mesh points as long as the approximating mesh remains regular. However, as the computation
evolves, the stretching of the computational grid may drastically reduce the stable time step (which is
proportional to the minimum size of an element of a triangular grid, say). Furthermore, if the mesh be-
comes highly distorted, the calculation becomes increasingly inaccurate. Remeshing is then required, at the
price of increased complexity and computational effort. Conversely, a pure Eulerian calculation allows the
development of a complex flow, at the price of a loss in accuracy when treating an arbitrarily varying, time-
dependent boundary (which is intrinsically of a Lagrangian type). Examples of the limitations of a pure
Eulerian or Lagrangian approach can be found in [1].

Hybrid methods such as the arbitrary Lagrangian—Eulerian (ALE) method address multi-material appli-
cations involving fluid-solid interactions. Refs. [2-5] report on recent advances in ALE coupling. In ALE
methods, the conservation equations are expressed in a control volume formulation, where the control volume
is bounded by a surface S, () moving with arbitrary local velocity u,. The control volume velocity u, has two
important limit values. In the Eulerian limit, u, = 0 and the control volumes are fixed. In the Lagrangian limit
u, = u, the local flow field velocity, and the control volumes coincide with material volumes.

In ALE methods, a Lagrangian phase is followed by a coordinate transformation due to the mesh
motion (remapping or advection phase). The advection step performs an incremental rezone in which nodes
are moved only a small fraction of a typical length of the surrounding elements. Monotonic advection
algorithms are used to prevent the advection step from creating new minimum or maximum values for the
solution variables.

In fluid-structure interactions with ALE methods, the equations of the structural elements are usually
expressed using a purely Lagrangian scheme, so that the nodes follow the motion of material particles. The
interaction with a fluid can be modeled through intermediate regions in which the mesh moves with a
spatially varying velocity. A grid-rezoning technique is used within the bulk of the fluid domain to respect
the movement of Lagrangian interfaces by simultancously minimizing the grid distortion. The specification
of u, is key to the success of ALE methods. Unfortunately, this process often requires a priori knowledge of
the solution when modeling the problem. For systems where the Lagrangian domain suffers large defor-
mation or where the Eulerian flow has high rotations, ALE methods will often fail to give a solution.
Finally, the ALE method does not appear to be very suitable for loosely coupling separate Eulerian and
Lagrangian software packages since this introduces a third solution algorithm and increases the complexity
of the coupling process rather than simplifying it.

The scheme we propose provides an alternative to ALE methods. Unlike ALE schemes, there is no
mixed Eulerian-Lagrangian region and coupling occurs only through interaction at the boundary of the
Eulerian and Lagrangian regions. The two subdomains are integrated separately by two independent
(synchronized) Eulerian and Lagrangian solvers. We will refer to this scheme using the acronym GEL
(ghost-fluid Eulerian—Lagrangian).

Since the Eulerian region mesh is usually Cartesian and stationary, the problem of how to treat moving
and irregular flow domain boundaries arises. When an arbitrary boundary is embedded in a structured grid,
any cell whose interior contains this boundary will be a “cut cell”. By filling in the cut cells and a small layer
of neighboring regular cells with an appropriate “ghost fluid”, cell updates can be performed in the same
standard way as in the bulk of the computational domain. Additionally, the time step is not constrained by
the geometry of the cut cells.

The treatment of the cut cells is crucial to any Cartesian grid method, since a straightforward approach
would reduce the stable time step to an arbitrarily small value due to the reduced size of the irregular cells.
Also, accuracy and conservation at the boundary must be addressed, but in such a way that extension of the
coupling scheme to two and three dimensions is relatively easy. Early work by Noh [1] made use of re-
distribution and cell-merging, probably the most popular approach in Cartesian grid methods. An extensive
review of these methods can be found in [6]. Numerical results typically present only first-order accuracy at
the boundary, independent of the accuracy of the flow solver in the bulk of the computational domain.
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Pember et al. [6] propose an adaptive Cartesian grid method where the boundary is reconstructed with a
shock tracking approach and treated as a stationary reflecting wall. The coupling scheme is an explicit two-
step method, enforcing conservation in the cut cells and in the neighboring regular cells through a redis-
tribution algorithm. Numerical results for a Prandtl-Meyer expansion show a degradation of the accuracy
of the scheme to first-order at the boundary. Recently, Falcovitz et al. [7] proposed a coupling scheme that
maintains conservation across the boundary cells when both the fluid and the boundary undergo uniform
motion. No indication is given on how the algorithm performs in actual dynamical problems.

The method we propose has its origin (and name) in the ghost fluid method (GFM) originated by
Fedkiw et al. [8-10]. GFM originated as an algorithm for handling Eulerian multi-phase multi-fluid
problems where interfaces separate regions of different fluids, e.g., air and water. The original GFM is
designed to capture discontinuous interfaces with an Eulerian solver on each side. Within a prescribed
distance of an interface, an Eulerian grid point is a real node to one solver and a ghost node to the other.
The prescription for populating a state of a ghost node in the GFM is to replace pressure and normal
velocity from the real node, while extrapolating in the normal direction a second thermodynamic variable
(entropy) and the tangential velocity.

GEL differs from the original formulation in the way the solution variables in the ghost region are
populated. In this respect, GEL is more akin to the local mirroring extrapolation technique presented by
Forrer and Berger [11] and Forrer and Jeltsch [12], since it treats the Eulerian—-Lagrangian interface as an
impermeable wall at any new iteration of the Eulerian solver. The main difference with respect to [11,12] lies
in the way the Eulerian—Lagrangian interface is tracked; in our case, a level set-based approach [13,14] is
followed. Also, GEL does not use boundary cell averaging and the order of the mirroring extrapolation is
lower than in [11,12], at least for a smooth flow. While less sophisticated, GEL is expected to be more
robust when dealing with arbitrarily complex boundaries and fluid—solid shock interactions, particularly in
three dimensions. We note that results presented by Forrer and Berger for moving boundaries are limited to
flow interactions with rigid bodies, whereas we address fully coupled problems in the sense described by
Noh [1].

In Section 1, a thorough treatment of the coupling algorithm is provided. Section 2 is an overview,
stating the class of problems we intend to address and outlining the coupling algorithm. As the Eulerian
and Lagrangian solvers that are used in this paper are well established, their descriptions are brief by intent,
with further references provided for readers desiring more information. Section 3 focuses on the decom-
position of the solution domain into Eulerian and Lagrangian subdomains, which leads to the definition of
the Eulerian-Lagrangian interface. The dynamical and kinematic constraints that need to be satisfied by
this interface are described there. Section 4 addresses the numerical implementation of the coupling scheme.
Other pertinent issues, including the temporal evolution of the subdomains, possible enhancements, and
areas of future research are also discussed.

The second part of the paper presents several numerical tests designed to measure the rate of conver-
gence and accuracy of the algorithm. Section 5 describes several one-dimensional verification tests. The
behavior of the interface under shock wave transmission is examined in the “transparency tests”. Section 6
discusses several two-dimensional tests. Verification tests proposed in [11] are adopted in order to inves-
tigate issues of mass conservation. The final example we consider is a verification test consisting of a shock
load over an isotropic elastic solid (superseismic loading problem). This is a fully coupled fluid-solid in-
teraction problem where the exact solution is known.

2. Overview

The work on Eulerian—Lagrangian coupling described in this paper is a part of the research effort
at Caltech to develop a virtual test facility (VTF) that provides a problem-solving environment for
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three-dimensional parallel simulations of the dynamic response of materials in multi-physics problems.
GEL coupling is used extensively and is the workhorse behind the VTF [15]. A typical example application
of the VTF is modeling the cylinder test used for high-explosive performance studies [16]. In this test,
sketched in the left panel of Fig. 1, a cylinder of high explosive is detonated inside of a metal tube. The
subsequent motion of the metal is used as a measure of the performance of the explosive. The motion of the
metal and the progress of the detonation wave can be strongly coupled if the chemical reaction processes in
the detonation wave are sufficiently slow.

The approach we follow divides the problem into a fluid mechanics and a solid mechanics portion (see
Fig. 1). This division is both theoretical and computational. On the one hand, it allows research and de-
velopment on the two different subject areas to progress separately and concurrently; on the other hand,
this separation let us combine the strengths of Eulerian and Lagrangian solvers.

Following standard practice in gas dynamics, shock physics, and high explosives modeling, we approximate
the motion in the Eulerian region as hydrodynamic in nature and neglect viscous effects. We discuss only
nonreactive flow in this paper but that is not an essential limitation and the method has been applied to
detonation problems. Nonreactive, inviscid fluid dynamics is described by the Euler equations [17]

op

a‘i'v : (pll) = 0,

0
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Here p is the density, u the velocity vector, P the pressure, and e is the specific internal energy. These
equations may be rewritten in conservative form

U, +V-F(U) =0, (2)

by using the vector of conserved variables U= (p,pu, pE)", the flux vector F(U) = (pu, puu +
IP, pu(E + P/p))", and the specific total energy £ = e + 1/2||u||*. The equation set (1) must be supplemented
by an Equation of State (EoS) that describes the equilibrium thermodynamic state of the material. For our
purposes, it is sufficient to have a relationship between pressure, internal energy, and mass density, P = P(e, p).
The examples presented in the paper all use the approximation of a perfect gas with a constant ratio of specific
heats v,
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Fig. 1. Cylinder test and domain decomposition. The cylinder test problem (left) is decomposed into a Cartesian domain, here with
adaptive mesh refinement, for the fluid mechanics solver (center); and a Lagrangian domain for the solid mechanics solver (right).
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P =(y—1)pe. 3)

Examples of a multi-species reactive flow with the Mie—-Griineisen EoS for the solid explosive and the
Jones—Wilkins—Lee EoS for the reaction products are presented in [15].

A number of simple Lagrangian solvers were developed to verify and validate Eulerian-Lagrangian
coupling. These solvers are a one- and two-dimensional integrator of motion for rigid bodies with assigned
trajectory or traction boundary conditions, an Euler—Bernoulli beam module, a one-dimensional La-
grangian gas dynamics solver, and a two-dimensional explicit finite element (FE) solver. Although these
Lagrangian solvers are rather simple, the methods described in this paper have also been applied [15] with a
rather sophisticated [18] FE solver.

Each one of these discretizations leads to a set of ordinary differential equations in the generalized
displacements X of the form
&’X _dX
i +Cdt + KX =Hf. 4)
We recognize in Eq. (4) the mass matrix M, the stiffness matrix K, the dissipation matrix C, and the vector f
of generalized external forces.

In the rigid body module, X is the vector of coordinates of the center of mass. We have C = 0, K = 0 and
f(¢) is computed by integrating the Eulerian pressure field over the boundary. The solution is advanced in
time either by a third-order Runge—Kutta or an explicit Newmark scheme. Alternatively, what is called an
essential boundary condition, i.e., a specification of the trajectory of the body, can be used.

The beam module is based on the classical Euler—Bernoulli (sometimes known as Bernoulli-Euler, or
Coulomb) beam theory, attributing the resistance to flexure entirely to extension and contraction of lon-
gitudinal filaments [19]. See, for example, [20] for a list of the theory’s main assumptions and limitations.
The derivation of the element matrices is standard and will not be reproduced here. A consistent mass
matrix is used for the integration of the transient beam equation. See [21-23] for further details.

A one-dimensional Lagrangian gas dynamics module has been developed to conduct a class of verifi-
cation problems referred to as transparency tests. The user can specify any combination of linear (von-
Neumann) artificial viscosity [24], quadratic artificial viscosity [25,26], and artificial heat conduction [27] for
solving the Euler equations with a perfect gas EoS. Nodal variables are nodal displacements and their
derivatives. Cell variables are pressure, internal energy, specific volume, artificial viscosity, and heat con-
duction. Properties of the finite elements (or cell variables) are staggered spatially with respect to the nodal
variables (in this one-dimensional setting). Cell variables and nodal variables are also staggered temporally
as shown in Fig. 2. Initial conditions corresponding to n = 0 are displacement and velocity at t = —0.5 and
pressure and specific volume at ¢ = 0. Pressure at t = 0 is used to update velocity to ¢t = 0.5 by the mo-
mentum equation. Velocity at ¢ = 0.5 is used to update specific volume to ¢t = 1.0 by the continuity
equation. The energy equation and EoS are used to compute the pressure at + = 1.0. This completes one
cycle, and n is now at 1. The finite difference numerical method follows essentially the scheme of von-
Neumann and Richtmyer [24]. For a more recent treatment of artificial viscosity and a detailed description
of its implementation in two and three dimensions, see [28].

The two-dimensional FE module is a displacement-based solver used for computing plane stress/
plane strain problems. Linear (3 nodes) or quadratic (6 nodes) triangular plane elements, with linearized
kinematics and explicit time integration of a Hookean elastic material, are implemented. The solution is
advanced by evaluating the force balance at time " in order to compute the acceleration of the system
between " and ¢"*!. This is equivalent to computing the velocity and acceleration via central differences,
and the method is, therefore, second-order accurate O(A#?) when equal time steps are used. The ad-
vantage of this scheme is low computational cost and low storage when a diagonal mass matrix is used
[23].

M
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Fig. 2. Finite difference space—time discretization for one-dimensional Lagrangian solver.

In this paper, we restrict our attention to the class of problems involving the coupling of an inviscid fluid
with a solid whose interface is assumed to be impermeable, nonreactive, adiabatic, and unable to support
surface tension. The VTF, for which the method is designed, targets problems (e.g., the cylinder test) which
fall under this category. With these assumptions, the Eulerian—Lagrangian interface (EL-interface, to be
defined in the following section) can be treated as a contact discontinuity with the following properties: (1)
no mass flux; (2) no jump in normal velocity; (3) free-slip boundary condition for the tangential velocity; (4)
no jump in the normal stress. Jumps in entropy (or density) across the interface are admitted. These
properties are enforced by the coupling scheme through the application of boundary conditions at discrete
times, as will be seen in the next section.

3. Time and space discretization

In our procedure, the entire solution domain is decomposed into subdomains of two different types,
Eulerian and Lagrangian. We assume that coupling exists only between subdomains that share a boundary,
and only through boundary conditions. The GEL coupling scheme provides these boundary conditions to
the solvers in a manner to be described next. The cases of Eulerian—Eulerian coupling (e.g., multi-fluid
simulations) and Lagrangian—Lagrangian coupling (e.g., contact mechanics) will not be discussed but their
importance is noted.

3.1. Spatial discretization and interface representation

Given an initial boundary value problem (IBVP) on Q x T, the domain @ (and the time coordinate on
the interval T, treated in the next section) needs to be discretized for numerical solution. Loosely speaking,
part of the domain will be covered by a Lagrangian mesh and the rest by an Eulerian mesh.

The discretization Q2 of Q that is associated with the Lagrangian solver is the Lagrangian domain.
Generally, Q, is an unstructured grid. The discretization Qg that is associated with the Eulerian solver is the
Eulerian domain. In this paper, we further specialize Qg to be a collection of structured grids, namely
Cartesian grids. Note that, in general, Q; C Q and Qg C Q. Fig. 3 is a sketch of a Lagrangian domain made
of triangular elements which is partially superimposed on a Cartesian grid.

The boundary representation of Q; is an oriented surface denoted by 0Q.. We are particularly in-
terested in the subset of 002, whose points lie in Q. We call this subset the EL-interface 0Qg . All the
coupling that takes place between the Eulerian domain and the Lagrangian domain is assumed to occur
at this interface.
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Fig. 3. Eulerian (regular grid) and Lagrangian discretizations (triangular mesh) showing overlap of domains and a layer of ghost cells
(filled points). The EL-interface is indicated by the thicker line on the Lagrangian boundary.
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The level set function (denoted by the scalar field ¢) contains an implicit representation of 0Qg; on Q. It
is defined as the signed distance from 0Qg;, evaluated at the center of a cell (in a finite volume scheme) or at
a grid vertex (in a finite difference scheme). In this paper, we will refer to such a point as a node when the
distinction between vertex and cell center is unimportant. The level set is discretized as the set of points
®;; = ¢(x;,y;), where the indices 7, j span the Cartesian grid. The level set was originally applied to com-
putations on Cartesian grids by Osher and Sethian in [29] and has been successfully employed to resolve
sharp interfaces between materials with different properties or different equations of state [8].

The equation ¢ = 0, or the zero level of the discretized field ¢, ;, identifies the EL-interface 0QgL. At each
time step, the level set is reconstructed on the Cartesian grid from the current Lagrangian description of the
boundary. To this end, ray-intersection, a popular approach for determining whether a point lies inside or
outside of a surface (a process known as point-classification), is implemented [30]. The complexity of the
overall algorithm is of order O(M - N), where M is the number of points in the Lagrangian boundary
representation and N is the number of points in the Eulerian grid. Recently, an algorithm to reconstruct (in
three dimensions) the closest point transform ¢ with optimal complexity has been developed [31].

Throughout this paper, we will use the sign convention introduced in [9],

Qr = {QE : @i,j<0}~ (5)

The set Qr designates the real (or flow) part of the Eulerian domain, where the flow field is computed, as
opposed to the ghost region, where boundary conditions are set. Eq. (5) means that the level set in the real
part of the Eulerian domain is negative. Since ¢ defines contour levels of the signed distance function, the
gradient V¢ at 0Qg. must be perpendicular to 0Qg itself. A corollary of the sign convention is that the
normal vector V/||V¢|| is oriented from the Eulerian to the Lagrangian domain. In practice, Vo/||Vo|| is
numerically approximated by central differencing of ¢, ;.

To use regular Cartesian grid cells, the collection of cells Qr needs to be augmented so that each
computational node has a complete stencil. This is done by adding to Qg a thin layer of cells Qg C Qf at
the EL-interface. We call this subset the ghost region. The Eulerian solver operates exclusively on
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Qr U Qg C Q. In Fig. 3, these cells are marked by a filled circle. The ghost region Qg is required to be “big
enough” and the required size depends on the details of the Eulerian solver. A more precise statement will
be made in the next section.

3.2. Ghost cells

The concept of ghost cells as used here is an extension for arbitrary boundaries of the commonplace
guard (or ghost) cells that surround a computational patch, i.e., a rectangular Cartesian grid. This practice
allows for the application of boundary conditions (BC). Additional rows of guard cells are used to
“complete” the stencil of the external cells of a patch so that the solver does not need to be aware of the
boundary of its computational domain. The actual number of rows depends only on the stencil of the
Eulerian scheme.

The introduction of a level set function allows for the extension of this idea to an arbitrary boundary.
The Eulerian node (i, j) is a ghost node if the level set at that point satisfies

QG:{QE:0<¢i,j<(pS}' (6)

The corresponding cell can be partially or fully covered by the Lagrangian discretization ;.

The parameter ¢g depends exclusively on the stencil of the numerical scheme that is used to compute the
fluxes. For example, a second-order accurate essentially-non-oscillatory (ENO) scheme requires four nodes,
two on each side of the node that is being updated, to compute the numerical flux. The extent of the ghost
region should be at least 2 - Ax, since we cannot expect a cell boundary to lie exactly at ¢ = 0. We must
account for the motion of the EL-interface because a ghost cell can be “exposed’ and become a real cell at
the next time step. Thus, in this example, the buffer area must be increased at least to ¢g = 3 - Ax. This one-
dimensional argument can be extended to higher dimensions as long as the solver implements a dimension-
by-dimension integration.

According to Eq. (6), the ghost region has to be initialized (or populated) up to a distance ¢g; the details
will be discussed in the next section. Note, however, that the coupling procedure is completely independent
of the patch integrator. We can think of it as setting the proper boundary conditions before advancing the
solution by one time step. Indeed, given a generic patch integrator, we require only two additions to the
code: (1) a test to compute the numerical flux only if ¢ < ¢4; (2) a test to update the solution only if
¢ < 1-Ax. The second point above is important because a ghost cell within one Ax from the EL-interface
can become a real cell after a time step. No more than one ghost cell layer needs to be updated since the
Courant-Friedrichs-Levy (CFL) condition is applied over all Qr U Qg when estimating a stable time step
for the fluid solver. The CFL condition prevents the contact discontinuity at the EL-interface from
sweeping more than a fraction of a Cartesian cell when the solution is advanced.

3.3. Time discretization and temporal coupling

The time coordinate T = [t,, ;] is discretized (partitioned) by 0 = {¢°,¢!,7,...,¢"} as follows:
N
T = U 7", (7)
1

where " = ("1, 1"].

It is clear that * = # (the initial time) and #* = # (the final time). The set 0 represents instants in time
when the coupling is performed. Note that this can be different from the temporal discretizations used for the
Eulerian or the Lagrangian solvers. In fact, Eulerian solvers and Lagrangian solvers usually employ dif-
ferent time integrators, possibly with multiple steps.
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The current implementation of GEL defines the common time increment A¢ which is allowable from
stability considerations for the Eulerian and Lagrangian grids, say A¢g and A#.. This increment can be
computed at run time from the previous cycle of computation, i.e., A"*! = min(A#, As?). However, Noh
[1] observes that several applications typically have A# < Atg, and allows Afg to be a (stable) multiple of
Afy.

To simplify the discussion on temporal coupling, we will refer to the set of equations integrated by the
Eulerian solver as E. Similarly, L refers to the set of equations integrated by the Lagrangian solver. The
solution of E depends on boundary conditions provided by L, which depends on the state of L, and vice
versa. The solution is assumed to be available at discrete times up to #".

One can advance the solution by integrating E using L(#*) and by integrating L using E(¢"); this simple
approach is called concurrent time coupling and it is used in the VTF as it is more suitable for solution by
parallel computers than staggered methods. An example of a staggered method is as follows: E is integrated
using L(#") and L is subsequently integrated using E(#"*'). With staggered methods, only one set of
equations can be solved at any given time.

A viable alternative is called PC-Heun time coupling [32]. After the first integration, one can re-integrate
E using a combination (average) of L(#") and L(#"*!) to get a new E(¢"*!') and, concurrently, re-integrate L
using a combination (average) of E(#") and E("*!) to get a new L(¢#"*!). Using a predictor—corrector scheme
such as this is often not practical because of its high overhead in both CPU and memory requirements.
Numerical experiments using this scheme are presented in Section 5.2.

4. Coupling scheme

GEL is a boundary condition coupling scheme for Eulerian and Lagrangian solvers which are sharing
portions of their boundaries (their EL-interface). In this section, we will describe GEL, and variations of it,
in detail.

In formulating the boundary condition exchange, we make the following assumptions: (1) the EL-in-
terface is defined by the boundary as geometrically determined by the Lagrangian solver. It is identified by
@ = 0; (2) the Lagrangian solver uses a natural (pressure) boundary condition at the EL-interface; (3) the
Eulerian solver requires a no-flux boundary condition (with free-slip) at the EL-interface.

A consequence of the first assumption is that, as stated earlier, the EL-interface location is recomputed
as the Lagrangian boundary moves.

As for the second assumption, either displacements or force boundary conditions could be applied to the
boundary of a Lagrangian solver. The second assumption indicates that only a force boundary condition is
used. In our implementation, pressure is linearly interpolated in the Eulerian domain at the location of the
Lagrangian pressure control points and used to enforce the traction boundary condition. It is interesting to
note that applying a velocity boundary condition by using the Eulerian velocity at the boundary does not
work. This can be seen with the following one-dimensional experiment. Imagine a shock wave in Qg
traveling towards an initially stationary solid ;. Since the solid is initially stationary, it will act as a re-
flective boundary to the Eulerian solver at the first integration, but this implies that the Eulerian flow
velocity at the boundary remains zero also after marching by one time step. This information is fed back to
the solid, which, therefore, remains still. Thus, there is no shock transmission in the Lagrangian domain
when we would expect one.

The last assumption implies that the Eulerian solver sees the domain computed by the Lagrangian
solver only as a moving boundary (completely ignoring all states in the interior of the Lagrangian
domain). The only information needed from €; is the velocity vector evaluated at the boundary.
This conclusion is similar to the one obtained in [33] for coupling compressible to incompressible
flow.
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4.1. Populating the ghost cells: fluid solver boundary condition

Population of a ghost cell states requires an extrapolation algorithm operating on the real flow. In the
following, the state that is extrapolated from Qg is marked with the subscript E, whereas the state that is
evaluated from 0Qg is denoted by W. The populated state in Qg is denoted by G.

The level set ¢ introduces a vector field of normals n = V¢/||V¢l|. We define t to be a unit vector normal
to n. The projection of a ghost node over Qg is

Xw = XG(ivj) + q)(ivj)n (8)

and the corresponding boundary velocity Vy can be found by interpolation of Lagrangian boundary values
at Xw.

For the extrapolation algorithm, the approach of capturing the EL-interface as a contact discontinuity
(proposed in [10,9]) suggests that pressure and normal velocity should be continuous across the interface.
However, the choice of the extrapolation scheme is, in general, not unique. In this paper, we experimented
with different algorithms for extrapolating density, pressure, and the flow field velocity. These techniques
are described in the following sections, and they consist of one-sided constant extrapolation (injection), a
variation on constant extrapolation (reflection), and linear extrapolation (mirroring). Results for each of
these schemes can be found in the second part of this paper for one- and two-dimensional problems. The
current section is closed by a few considerations on the implementation of the boundary conditions as a
Riemann problem.

4.1.1. Constant extrapolation or injection
Constant extrapolation of a scalar quantity / can be achieved through advection by integrating the
Eikonal equation

L+n-VI=0, )
subject to the boundary condition
1= [W on OQEL

The numerical discretization of Eq. (9) can be implemented as a first-order upwind space discretization
with first-order accurate time integration [34]. The equation has to be solved for a number of pseudo time
steps until the ghost region has been fully populated [9,10]. Our experience is that this scheme is robust even
for irregular interfaces and shock interactions, since sharp variations in the advected quantities are
smoothed by the first-order advection algorithm. To reduce computational cost, advection needs to be
performed only on a tiny strip of the computational domain, enclosing the ghost region and the closest strip
of real flow region (say —Ax < ¢ < ).

The prescription for populating a ghost node is

PG PE
VG = (VW . n)n + VE — (VE . n)n s (10)
Ps P

which assigns the normal velocity of the Lagrangian boundary to the normal velocity of the ghost node. We
call this process the normal velocity treatment by injection.

4.1.2. Extrapolation by reflection
The extrapolation scheme by reflection is a variation of the extrapolation by injection. In the standard
treatment of an impermeable wall, the normal component of the velocity in a ghost cell is set to be
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antisymmetric with respect to the normal velocity in the reference frame moving at (Vy - n)n. Based on this
argument, we propose an alternate formula for Vg

PG PE
VG = (2VWH7VEH)H+(VEt)t . (11)
PG PE

The normal velocity treatment by reflection relies on advection as the previous treatment. It is not a
linear extrapolation because it does not account for the distance from the wall to the ghost node. An
advantage over linear extrapolation is that this prescription avoids the overshoot of an extrapolated ve-
locity when the interface is very close to a real node. An advantage over injection is that the antisymmetric
treatment of normal velocity is a more accurate implementation of an impermeable wall.

4.1.3. Linear extrapolation or mirroring

Linear extrapolation in the ghost region can be performed by computing the mirror image X in Qg of the
(i, /) ghost node, xg [11,35]. This operation requires the normal distance of xg from 0Qg; , which is (with the
correct positive sign) the value ¢(i, j). Thus, the relation between X and X is provided by

% = xa(i. j) + 20(i. j)n. (12)

The prescription for populating the ghost state is formally identical to the one in Eq. (11), only now Vg, pg,
Pg are interpolated values (we use bilinear interpolation) at X in Qg.

It should be noted that extrapolation by mirroring is based on the assumption that the EL-interface is
moving at constant speed within a given time increment; in general, this is not true. A typical counter-
example is an explicit FE solver, where all nodes assume a constant acceleration in any given time step. One
can include acceleration effects by imposing a suitable pressure gradient in the ghost region. In one di-
mension, if %w(¢) is the acceleration of the wall, we would have

RC(Xw,t) = —p(xw,t)xw (13)

However, complications arise when the flow is not smooth (a shock, even when smeared, is associated with
high acceleration) and implementation is difficult in two and three dimensions. Furthermore, one may
argue that since the state on the EL-interface is only interpolated to first-order at best, it is of little ad-
vantage trying to predict the flow behavior at the interface to better than first-order.

4.1.4. Coupling as a Riemann problem

In this section, we suggest an improvement of GEL via formulation of a Riemann problem at the EL-
interface. The implementation requires that the equations of state of the materials be communicated to a
software module which solves the Riemann problem at the interface. In the simplest case of a linearized
solver, knowledge of the stiffness (or the impedance) of the material on both sides of the EL-interface is
sufficient. In any case, this approach involves a more complicated coupling algorithm.

The Riemann problem can be understood as follows. Consider an initial jump discontinuity at x = 0
separating two constant states,

. J U forx<0,
U(x,tO){Ur for x > 0. (14)

Eq. (14) is an example of a shock-tube problem, where a hypothetical “membrane” situated at x =0
separates the two states at = 0. Without loss of generality, we take Qg to be on the right of the membrane
and Q to be on the left. If we consider only the subdomain Q;, this becomes a piston problem where the
entire domain is initially a constant state with a boundary condition at x = 0.
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If the original shock-tube problem is to be solved as a coupled Eulerian-Lagrangian problem, then the
Lagrangian scheme solves the piston problem for an interval ds subject to a natural (pressure) boundary
condition P,.

There is a unique driving pressure P, for the piston problem that corresponds to the original shock-tube
problem. This is the boundary condition that needs to be applied to the Lagrangian solver if it were to
simulate the original system Eq. (14) correctly. It is natural to ask whether the pressure P, corresponding to
the left state U, and the pressure boundary condition P, are equal. Rephrased in the context of GEL
coupling, is the pressure boundary condition to the Lagrangian solver the pressure of the fluid given by the
Eulerian solver? The answer is no, in general. In the case of a shock-tube filled with perfect gases having the
ratio of specific heats y, sound speed ¢ and pressure P, with subscripts 1 and r denoting the left and right
states, A and Py, are related by the shock-tube [17] equation

=2n/(n—1)
ﬁ:i 1 — (0 — Dlar/a)(P/Pr — 1)
Pr Pr \/2'))1.[2yr + (Vr + 1)(PP/PF - 1)]

(15)

Thus, when there is a discontinuity in pressure across the EL-interface, the pressure boundary condition
(P,) assigned to the Lagrangian solver is not the pressure given by the Eulerian solver (7). In practice, large
jumps of pressure are often smeared and A /P ~ 1. In this limit, P, is well approximated by P, and solving the
Riemann problem at the interface to calculate P, is not necessary. Furthermore, these pressure discontinuities
do not remain at the interface as they get convected away with the flow, and the resulting error is usually small.

5. One-dimensional tests

In this section, we will restrict ourselves to the analysis of one-dimensional test problems. Two-di-
mensional problems are discussed in Section 6.

The following results are obtained by using an essentially nonoscillatory local Lax—Friedrichs (ENO-
LLF) flow solver [36,37] on a Cartesian grid. A local Lax—Friedrichs form [36] is used to avoid entropy
violating shocks near sonic points, making the scheme very robust at the price of perhaps too much dis-
sipation to accurately capture all the flow features. Time marching is achieved through the total variation
diminishing (TVD) third-order Runge—Kutta method devised by Shu and Osher [36]. The time step Af is
selected to account for the CFL stability condition.

We first consider a prescribed boundary motion to examine issues of conservation of mass and entropy
in isentropic flows. The next step is to couple the boundary motion to the flow in a simple fashion and
examine the problem of free expansion of a piston. The simplicity of this test case allows us to explore
different temporal couplings and coupling strategies. Then we study the oscillations of a spring-mass system
in a compressible gas. The problem is reducible to a nonlinear oscillator, and we compare trajectories of the
piston in the underdamped and overdamped cases with the numerical solutions of the corresponding or-
dinary differential equation. Finally, we examine wave interactions in a setting where the Lagrangian and
the Eulerian materials have identical acoustic impedance. This test, called the transparency test, assesses
how transparently waves can be transmitted between domains that differ only in their numerical modeling.
The Lagrangian modules were described previously in Section 2 of this paper.

5.1. Prescribed rigid boundary motion
Conservation is not guaranteed [7] by a scheme which does not take into account cut cells and the

motion of cell interfaces during a time step A¢. In this section, the convergence properties of the treatments
by reflection and injection are compared. Results for mirror flow extrapolation are also computed for
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completeness. In all cases, we show that the losses in mass and entropy decrease at least linearly with the
mesh size, i.e., with first-order convergence. For this smooth one-dimensional problem, quadratic reduction
of these errors could be achieved by an appropriate treatment of how boundary cells are cut by the interface
[11,12]. As noted earlier, these schemes are potentially cuambersome in higher dimensions and they tend to
provide only linear convergence in multi-dimensional simulations involving shocks [11].

We will consider a perfect gas confined between two rigid walls at x, = 1.0 and at x; = 0.5 + vt + a;/2¢%.
This problem has been previously considered by Forrer and Berger [11], who demonstrated second-order
convergence. Initial conditions are

p(x,0) = 1 +0.2cos(2n(x — 0.5)),
v(x,0) =2(1 — x)uv, (16)
P(x,0) = p(x,0)".

If the left wall is moving leftward (v, < 0), an expansion takes place and the flow field is isentropic for all
times, s(x,7) = s(x,0) = p(x,0)p(x,0)" = 1.0. The numerical value of the entropy s can, therefore, be
monitored for error analysis.

We denote an initial value with the superscript i and a final value with the superscript f. Discrepancies in
mass Am and entropy As at the final time are given by

”iC ng: ”iC
Am = Zp}|C,~|—ZP}|Cj| /ZPHCA,
j=1 J=1 J=1
. f e
As= )" |sh - 1‘\@\ > Ic,
= =1

where |C;| is the length of that part of a computational cell C; that lies in Qg. The final time ¢ is chosen so
that the walls are located exactly at the interface between two grid nodes. Since, at that time, there are no
cut cells, the two equations above are exact estimates of the errors of a piecewise constant solution. Thus,
there are exactly ni. cells belonging to Qg at time ¢ and nt. cells at time 7. We also introduce a measure of
the error of the entropy at the left moving wall

(17)

Asw = |sly — 1], (18)

where W is the index of the left boundary cell.

Equipped with these error estimators, we now consider two cases and study the convergence of the
results as the grid spacing 4 decreases. In all the computations, a fixed ratio d¢/h = 0.32 is used, corre-
sponding to a CFL number approximately equal to 0.6.

Case A. We set the left wall velocity vy = —0.5 and the acceleration ¢ = 0. Results for different grid
refinements at #f = 0.5 are shown in log-log plots in Fig. 4 (left column). Reference lines for linear and
quadratic convergence are also displayed.

For all the extrapolation schemes, the convergence rate is linear for Am and quadratic for As,
whereas Asy displays an intermediate behavior. Mirroring gives the best performance in all the three
error indicators, particularly the value Am which is an order of magnitude smaller than the value
obtained by using injection or reflection. This result is expected, as the linear extrapolation described in
Section 4.1.3 is designed to implement an impermeable boundary for the case of constant velocity of
the interface. However, we notice that mirroring is slower in achieving linear convergence of Am and
that the rate of decrease of Asy is only linear, and not superlinear, as for the other two extrapolation
schemes.
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Case B. The left wall velocity is initially zero, while the acceleration is constant ¢, = —2.0. Results at
f = 0.5 are shown in log—log plots in Fig. 4 (right column). The convergence is again first-order for Am and
second-order for As. The error in entropy at the wall, Asw, decreases linearly for reflection and mirroring,
and superlinearly for injection. In this situation of constant wall acceleration, the mass loss is slightly
smaller with the reflection treatment. This result suggests that none of the extrapolation schemes considered
here can be expected to minimize all error indicators for all possible tests. The role of interface acceleration
is clearly important for simulations of shock interactions at an EL-interface, and it is further investigated in
the following sections.

5.2. Free expansion

The free-expansion experiment is the simplest nontrivial test of GEL coupling. It is simple because an
exact solution is available; it is nontrivial because the physics of the problem has the fluid and the solid
tightly coupled together.

The setup of the free-expansion problem consists of a frictionless piston in a tube with a vacuum to the
right of the piston and an initially constant state to the left at pressure, density, and sound speed given by
Py, py, ¢ = \/7Py/py, 7 being the ratio of specific heats (see Fig. 5).

The solution to the problem can be simplified with the definition of the following time constant:

2mcey
‘ o(1+7)’ (19)
where m is the mass per unit area of the frictionless piston. The speed of the piston and the pressure at the
interface are determined by the method of characteristics [17]. Writing ¢* = ¢/7, the solution is given by

(»=1/(»+1)
u_ 2 || 1! (20)
Co Yy — 1 14+ #
and
P | 72/
i 21
P o
t A

Undisturbed
u=0
c=c,

X

g——» X(1)

Fig. 5. Wave diagram for continuous piston withdrawal.
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The exact velocity and pressure are plotted in Fig. 6.

The simplicity of this test case allows us to explore different temporal couplings and coupling strategies.
Four cases are presented in this section.

1. Concurrent integration, normal velocity treatment by injection.

2. Concurrent integration, normal velocity treatment by reflection.

3. PC-Heun integration, normal velocity treatment by injection.

4. PC-Heun integration, normal velocity treatment by reflection.

In all cases, a third-order ENO solver is used for the solution of the fluid problem. For cases using
concurrent integration (cases 1 and 2), a third-order TVD time integration is used for the fluid and explicit
integration is used for the piston motion. For cases using PC-Heun integration (cases 3 and 4), a second-
order predictor—corrector method is used for the fluid. The motion of the solid is also written as a first-order
system and integrated with a second-order predictor—corrector method.

The grid size is compared against a characteristic length L,

26'(2)1’}1
L =cyt Po(l-ﬁ-”/). (22)
Values Ax/L 0f 0.2, 0.1, 0.05, and 0.025 are used for the convergence study, corresponding to 20, 40, 80, and
160 grid cells. The total time of the simulation is # = 2. A CFL number of 0.1 is used for all simulations.

Figs. 7 and 8 compare the four cases against the analytical solution for the pressure at the interface (Eq.
(21)) and the piston velocity (Eq. (20)), respectively. All cases converge to the analytical solution in pressure
at times sufficiently far from ¢ = 0. The L; metric

1P - R, :/|<P7Pe>|dr (23)

is used to measure the distance between the exact solution P, and the numerical solution P. Convergence
results are shown in Table 1.

It is observed that while all cases show first-order convergence, those where predictor—corrector time
coupling is used display better accuracy. Additionally, velocity treatment by reflection also improves
accuracy in this test problem. Two observations can be made from examining Fig. 7. All cases studied
overestimate the pressure at the beginning, and the reflection cases undershoot the exact profile (see the

T T
\ — Nondimensional Velocity
09F \ — - Nondimensional Pressure

08F N g
0.7t N 1
0.6 S 1
05t 1

0.4 RS b

Nondimensional value
/

0.3 --_1
0.2t J

0.1 1

0 0.5 1 . 1.5 2
Nondimensional time t = t/t

Fig. 6. Nondimensional velocity of piston of the piston—air system and the nondimensional pressure at the piston—air interface.
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Fig. 8. Computed nondimensional piston velocity plotted against analytical solution (1/Axg = 40). The box on the right is a close-up
of the solution for ¢* close to 2.

zoom window of the figure). The initial overestimate can be understood as follows. In the first time step,
the piston sees a pressure and accelerates but the fluid sees a stationary wall and no flow occurs; thus, the
pressure drop that would accompany the expansion lags behind the piston motion. In the next step, since
the Eulerian velocity is still zero and the piston has attained a finite velocity, reflection will assign
twice the piston velocity in the ghost region while injection assigns the piston velocity in that region. In
case 2, the ghost velocity is slightly too high and leads to a pressure drop, resulting in the undershoot
displayed in the close-up of Fig. 7.

5.3. One-dimensional spring-mass system

A spring-mass system contains the key features of the very simplest of Lagrangian schemes for treating
elastic solids.
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Table 1
Results for the free-expansion problem
1/Axg Case Coupling Integration L, error
20 1 Injection Concurrent 1.56 x 107!
20 2 Reflection Concurrent 6.74 x 1072
20 3 Injection PC-Heun 5.73 x 1072
20 4 Reflection PC-Heun 2.07 x 1072
40 1 Injection Concurrent 7.56 x 1072
40 2 Reflection Concurrent 3.45 x 1072
40 3 Injection PC-Heun 2.88 x 1072
40 4 Reflection PC-Heun 1.01 x 1072
80 1 Injection Concurrent 3.72 x 1072
80 2 Reflection Concurrent 1.73 x 1072
80 3 Injection PC-Heun 1.45 x 1072
80 4 Reflection PC-Heun 4.96 x 1073
160 1 Injection Concurrent 1.84 x 1072
160 2 Reflection Concurrent 8.70 x 1073
160 3 Injection PC-Heun 7.27 x 1073
160 4 Reflection PC-Heun 2.47 x 1073

The equation of motion for a one-dimensional spring-mass system is
mx = P(t) — k(x — xo), (24)

where x(¢) is the position of the spring, xo is the equilibrium position, k is the stiffness, P(¢) is the pressure
applied at the piston face, and m is the piston mass per unit area. Using the method of characteristics [17],
we rewrite the equation of motion as

P 13 2y/(=1)

. y—1Xx

x—|—a)é(x—x0):—0 17 —
m

25
2 Co ( )
At time 7 = 0, the piston is at rest and the pressure of the fluid is uniformly Py. Recognizing w} = k/m as the
natural frequency of the harmonic oscillator, it is evident that Eq. (25) describes a nonlinear oscillator with
an equilibrium point at x = xy + Py/k. To formulate the problem in nondimensional form, take L = Py /k
and wy to be the characteristic length and frequency, respectively. Then Eq. (25) becomes

X"+ X = (1 —oax)?0 (26)
with
—1 woL
o = VT %’ (27)

where X = (x — x¢)/L and the derivative is taken with respect to t = tw.
When o < 1, linearization of Eq. (26) leads to an equation describing underdamped motion. With initial
conditions x(0) = 0 and x(0) = 0, the solution is
X

7 — 1 — e(=7/G=D)awmot (COS Bawot +

. i 1 % sin ﬁa)ot) (28)
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Although approximate, Eq. (28) suggests that for « large enough (say o > (y — 1)/7), the solution becomes
overdamped, i.e., the trajectory does not exhibit oscillations.

We consider next a numerical solution of Eq. (26) with zero initial displacement and velocity. The
coupling algorithm uses concurrent integration and normal velocity treatment by reflection.

Case A. Py = 10°Pa, p, = 4kg/m’, k = 107 N/m and m = 3kg/m’. For y = 1.4, Eq. (27) gives « = 0.062.

Case B. Py =10Pa, p, = 4kg/m’, k =2 x 10’N/m and m = 0.02kg/m’. For y = 1.4, Eq. (27) gives
o =0.53.

Results are shown in Fig. 9 (case A) and Fig. 10 (case B). Fig. 9 displays two different grid resolutions
(Ax/L = 0.2 and Ax/L = 0.1) both for first-order and second-order ENO. Note that in the coarsest case, only
about eight nodes are swept back and forth by the interface. The trajectory is reconstructed almost exactly,
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Fig. 9. Computed trajectories of the piston in the underdamped spring-mass case (case A) are compared against the numerical solution
of Eq. (26) (labeled as “exact”) for a piston initially at rest. The box displays a detail of the trajectories, magnified 45x, at 7 - wy ~ 11.
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Fig. 10. Computed trajectories of the piston in the overdamped spring-mass case (case B) are compared against the numerical solution
of Eq. (26) (labeled as “exact”) for a piston initially at rest. The box displays a detail of the trajectories, magnified 25x, at 7 - wy ~ 7.
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with a small phase error at later times. The box inside the plot magnifies the trajectory by a factor of 45. Since
the accuracy of the scheme at the boundary is expected to be of order Ax, it comes as no surprise that the
coupling with the second-order solver performs only slightly better than the one with the first-order solver.
For case B, the two grid resolutions are Ax/L = 0.04 and Ax/L = 0.02. In Fig. 10, the convergence is
again linear and we note a small phase error at later times. The close-up box magnifies the trajectory by a
factor of 25. This time, second-order ENO shows improved accuracy with respect to first-order ENO.

5.4. Transparency test

In this section, we propose a test problem for evaluating the accuracies of different coupling techniques.
A transparency test consists of a domain of a single material with a fictitiously introduced interface that
separates it into two abutting subdomains. Each subdomain is separately solved and updated so that
coupling between domains occurs only via boundary condition exchanges.

Clearly, the fictitious interface will be transparent to waves in the case of perfect coupling (hence the
name). Although the test is easily generalizable to higher dimensions, only one-dimensional tests are per-
formed here. We will refer to them as (1) the EL transparency test, where a shock wave travels from Qg to
1, and (2) the LE transparency test, where a shock wave travels from Qp to Qg.

5.4.1. The one-dimensional EL transparency test

In the EL case, we consider a shock wave of Mach numbers 1.2 and 1.5 initially propagating on the
Eulerian mesh. A fixed Eulerian grid size of Axg = 0.05 and two different Lagrangian grid sizes, Ax; = 0.05
and Axp = 0.025, are considered. Results of coupling using normal velocity treatment by injection and by
reflection are compared.

The problem has no natural length scale. Discretizing the solution introduces the Eulerian grid spacing
Axg and the two Lagrangian grid spacings (before and after compression) Ax;; and Ax;,. From mass
conservation, the two Lagrangian length scales are related by Axy;/Ax, = p,/p;, where p, and p, are the
pre- and post-shock densities, respectively. Other relevant length scales include the width of the shock in
the Lagrangian domain, which depends on the artificial viscosity and artificial heat conduction models, and
the width of the shock in the Eulerian domain, which depends on the details of the Eulerian solver and is
typically three to five mesh points.

Representative results are shown in Fig. 11 for a shock Mach number 1.5, Axg = 0.05 and Axy; = 0.025.
The plots show the spatial density profiles at selected times. The dotted line in the middle represents the
one-dimensional EL-interface. The Eulerian domain is to the left of the interface; the Lagrangian domain to
the right. The exact shock profile is shown as the solid line through the data. Every second data point is
plotted in the Eulerian domain, and every fourth data point is plotted in the Lagrangian domain to avoid
cluttering the figure. The coupling is performed using the injection method of Eq. (10).

We remark that the state in Qg is quite uniform after the transmission, and that the EL-interface exhibits
“good” transparency (a quantitative measure of error will be introduced later). Additionally, the shock
wave that forms in Q has the correct strength and position. The density profile in Q2 in the post-shocked
state is uniform except near the boundary, which exhibits the well-known effect of wall-heating [27] due to
artificial viscosity. Such wall-heating can be reduced or removed by adding an artificial heat flux.

The pressure computed by the Eulerian solver is nondimensionalized by a constant equal to the exact
post-shock pressure P,. To assess the transparency of the EL test case, the following metric is used:

-

——1
PS S

Eq. (30) gives a measure of the distance between the exact Eulerian solution and the computed solution. All

errors quoted in this section use Eq. (30) evaluated at ¢+ = 0.001 s.
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Fig. 11. Spatial profiles of density plotted at selected times for the EL transparency test. Eulerian solution is to the left of the dotted
line and Lagrangian solution to the right.

The errors of a subset of cases studied are given in Table 2. To give an idea of the size of the errors in
the table, the nondimensional pressure profile for the first case (corresponding to an error of 4.23 x 107%)
is plotted in Fig. 12. It can be seen that most of the contribution to the error comes from the initial
startup error, a consequence of the prescribed sharp shock profile smearing itself out across a few
computational cells. Within the range of shock strengths and grid sizes tested, we observe that the in-
terface behaved transparently with a small error in the solution, quite independent of the coupling
scheme used.

5.4.2. The one-dimensional LE transparency test
In the one-dimensional LE transparency test, a shock is formed in the Lagrangian domain. We will see
that shock waves no longer transmit across the EL-interface transparently. Accuracy is measured by
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Table 2

Error analysis of the EL test
1/Axg 1/Axy, Coupling Mach No. L; error
400 200 Injection 1.5 423 x 107*
400 200 Injection 1.2 1.87 x 107
400 400 Injection 1.2 1.31 x 107#
400 400 Reflection 1.2 1.35x 107
400 200 Reflection 1.2 1.81 x 107
400 200 Reflection 1.5 4.69 x 1074
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Fig. 12. A plot of the nondimensional pressure profile for the EL transparency test after shock transmission.
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Fig. 13. One-dimensional LE (Lagrangian—Eulerian) transparency test setup (with mesh points shown).

computing the error in pressure in the Lagrangian domain after the shock has passed into the Eulerian
domain. The L; norm of the error in pressure is given by
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‘ l/QL (21)’(19, (31)

where the integral is approximated over the Lagrangian domain, Qp. As in the previous error estimate, P; is
a constant equal to the exact post-shock pressure.

Following the conventions in continuum mechanics, we will use X to represent the original (reference,
Lagrangian) coordinate. The setup is a one-dimensional “column of gas” of unit length divided into two
regions. The region 0.6 < X < | of the gas in the reference configuration is modeled by a Lagrangian solver.
The region 0 < X < 0.6 is modeled by an Eulerian solver (see Fig. 13). A shock is created in the Lagrangian
region by instantaneously increasing the right hand boundary (piston) velocity at time ¢ = 0.

At X = 1.0, we have X(t) = —U,H(t), where H(t) is the Heaviside step function, and U, is the piston
velocity. For a perfect gas, the Mach number M; of a shock moving in an undisturbed medium (with sound
speed c;) is related to U, by [17]

= (2 o)

For the LE test, the following parameters are considered: 1/Axg = 200 and 400, 1/Ax;; = 100, 200, and
400. A perfect gas equation of state with y = 1.4 is used. Piston velocities of 100, 200, and 400 m/s are
specified. The corresponding Mach numbers from Eq. (32) are M; = 1.22 and 1.48. Results of coupling
using normal velocity treatment by injection and by reflection are compared.

The density, velocity, and pressure profiles of a representative case with 1/Axg = 200 and 1/Ax; = 200
at My = 1.22 are presented. Fig. 14 shows the results obtained with coupling by reflection and Fig. 15 the
results obtained with coupling by injection.

It is clear from Figs. 14 and 15 that the EL-interface causes spurious reflections as the shock wave passes
from the Lagrangian domain into the Eulerian domain. The L; error in pressure as computed by Eq. (31)
measures the absolute area of the “blip” in pressure that appeared after the shock transmission through the
EL-interface. It is clear from the figures that the blip is smaller in the injection case.

The errors as a function of time are shown in Fig. 16 for the two cases plotted in Figs. 14 and 15.
The vertical dotted line depicts the time of arrival of a perfectly sharp Mach 1.22 shock to the EL-
interface.

The error before the shock reaches the interface is due to the smearing of the shock in the La-
grangian domain. It grows as the shock widens to its natural width (which is a function of the ar-
tificial viscosity parameters) and then levels off. After transmission, the error in pressure (in the
Lagrangian domain) reaches a final value quickly. If the interface was truly transparent, this error
would be zero. The error analysis (Table 3) gives the error of various test cases at the final simulation
time of 2ms.

The explanations for these spurious reflections are as follows. As the shock travels across the EL-in-
terface, all the gradients in the ghost region are set to zero through the advection algorithm. In other words,
the smeared shock wave is truncated at the EL-interface. As a result, the Eulerian solver does not see the
full extent of the incoming wave. Most notably, the removal of the pressure gradient in the ghost region
reduces the acceleration effect that accompanies a shock wave. Therefore, the pressure as seen by the
Eulerian solver does not build up as quickly as it should and this gets fed back as a traction boundary
condition to the Lagrangian solver. This explains why there is a rarefaction-like reflection back into the
Lagrangian domain as the shock wave passes through the interface.

Another observation is that the normal velocity treatment by injection results in a lower error than the
treatment by reflection. A likely explanation is that the reflection strategy, which is designed to approximate
the effect of a nonaccelerating boundary, filters (or averages) out acceleration effects more than the injection
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Fig. 14. Transparency test, shock wave generated in Lagrangian region and transmitted to Eulerian region. Normal velocity treatment
by reflection is used.
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Fig. 15. Transparency test, shock wave generated in Lagrangian region and transmitted to Eulerian region. Velocity BC by injection
used.
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Table 3

Error analysis for the LE test
1/Axg 1/Axy, Coupling Mach No. L, error
200 200 Reflection 1.22 5.07 x 1073
200 200 Injection 1.22 1.73 x 1073
200 100 Reflection 1.22 434 x 1073
200 400 Reflection 1.22 5.74 x 1073
400 400 Reflection 1.22 2.52x 1073
400 200 Reflection 1.22 217 x 1073
400 400 Injection 1.22 0.87 x 1073
200 200 Injection 1.48 297 x 1073

method does. This filtering is believed to play a significant role because in this transparency test the EL
boundary is subjected to very high acceleration upon arrival of the shock (directly proportional to the
steepness of the smeared shock wave).

Numerical results are shown in Table 3. Note that these errors are about an order of magnitude larger
than those shown in Table 2 for the EL transparency test.

5.4.3. Transparency test conclusions

A series of experiments was done to test grid effects by refining the Lagrangian and the Eulerian grids.
The effect of shock width and normal velocity treatment was also examined in separate tests. It is found that
by simultaneously refining the grids, little gain in accuracy (as measured by the L; norm pressure) can be
obtained. The most dramatic improvements (in terms of reducing the “blip’’) occur through refining the
Eulerian grid and coarsening the Lagrangian grid. This can be explained by the argument in the previous
section about the sharpness of the shock wave in the Lagrangian region.

A shock in the Eulerian solver has a natural width depending on the type and the order of the scheme. A
shock in the Lagrangian solver also has a natural width associated with the amount of artificial viscosity
and artificial heat conduction. A natural question arises whether matching these two widths is important.
The answer appears to be negative. The reflection seems to depend most strongly on the amount of ac-
celeration undergone by the EL-interface. This acceleration can be decreased by:
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1. Coarsening the Lagrangian grid. Since for given values of the parameters used in the artificial viscos-
ity, the shock has a constant mesh width (e.g., 5 mesh cells); a grid coarsening leads to a thicker shock
(e.g., 5Ax) which reduces the pressure gradient in the smeared profile.

2. Increasing artificial viscosity, which smears the shock over a larger number of mesh cells.

In addition, as the Eulerian grid is refined, a more accurate interpolation of pressure on the Eulerian grid
onto the EL-interface is obtained. As a result, refining the Eulerian mesh improves the transmission of
shock waves through the EL-interface.

6. Two-dimensional tests

The following results are obtained by using the same ENO-LLF Cartesian solver described in the
previous section. The one-dimensional scheme is extended to higher dimensions via a dimension-by-di-
mension technique [38]. We first consider the interaction of a shock with walls modeled by Euler—Bernoulli
beams. Again, we verify that mass is conserved to first-order in the grid resolution. This result is 